4384
S. Majima et al. / Tetrahedron Letters 53 (2012) 4381–4384
130, 15688; (d) Nishimoto, Y.; Moritoh, R.; Yasuda, M.; Baba, A. Angew. Chem.,
Acknowledgments
Int. Ed. 2009, 48, 4577; (e) Nishimoto, Y.; Ueda, H.; Inamoto, Y.; Yasuda, M.;
Baba, A. Org. Lett. 2010, 12, 3390; (f) Trofimov, B. A.; Schmidt, Y. E.; Ushakov, I.
A.; Zorina, N. V.; Skitaltseva, E. V.; Protsuk, N. I.; Mikhaleva, A. I. Chem. Eur. J.
2010, 16, 8516.
This work was supported by Grant-in-Aid for Research Activity
Start-up from JSPS (Y.S.) and ERATO from JST (M.K.).
8. Iwahama, T.; Sakaguchi, S.; Ishii, Y. Chem. Commun. 2000, 2317.
9. To the best of our knowledge, all examples of this reaction type are
intramolecular reactions: (a) Kusama, H.; Yamabe, H.; Iwasawa, N. Org. Lett.
2002, 4, 2569; (b) Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.;
LaLonde, R. L.; Toste, F. D. Angew. Chem., Int. Ed. 2006, 45, 5991; (c) Barabé, F.;
Levesque, P.; Korobkov, I.; Barriault, L. Org. Lett. 2011, 13, 5580; (d) Lee, K.; Lee,
P. H. Adv. Synth. Catal. 2007, 349, 2092; (e) Brazeau, J.-F.; Zhang, S.; Colomer, I.;
Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2012, 134, 2742; (f) Wang, X.; Pei, T.;
Han, X.; Widenhoefer, R. A. Org. Lett. 2003, 5, 2699; (g) Xiao, Y.-P.; Liu, X.-Y.;
Che, C-M. Angew. Chem., Int. Ed. 2011, 50, 4937; (h) Davies, P. W.; Detty-
Mambo, C. Org. Biomol. Chem. 2010, 8, 2918.
10. (a) Pines, H.; Kannan, S. V.; Simonik, J. J. Org. Chem. 1971, 36, 2311; (b)
Rodriguez, A. L.; Bunlaksananusorn, T.; Knochel, P. Org. Lett. 2000, 2, 3285; (c)
Gaudin, J-M.; Millet, P. Chem. Commun. 2008, 588. Intramolecular reaction; (d)
Kourra, C.; Klotter, F.; Sladojevich, F.; Dixon, D. J. Org. Lett. 2012, 1016, 14.
11. Tsuda, T.; Watanabe, K.; Miyata, K.; Yamamoto, H.; Saegusa, T. Inorg. Chem.
1981, 20, 2728.
References and notes
1. Trost, B. M. Science 1991, 254, 1471.
2. For reviews of the direct use of allylic alcohols as an allylating reagent, see: (a)
Muzart, J. Tetrahedron 2005, 61, 4179; (b) Muzart, J. Eur. J. Org. Chem. 2007,
3077; (c) Tamaru, Y. Eur. J. Org. Chem. 2005, 2647; (d) Bandini, M.; Cera, G.;
Chiarucci, M. Synthesis 2012, 504; For selected recent examples, see: (e)
Ohshima, T.; Miyamoto, Y.; Ipposhi, J.; Nakahara, Y.; Utsunomiya, M.; Mashima,
K. J. Am. Chem. Soc. 2009, 131, 14317; (f) Tanaka, S.; Seki, T.; Kitamura, M.
Angew. Chem., Int. Ed. 2009, 48, 8948; (g) Jiang, G.; List, B. Angew. Chem., Int. Ed.
2011, 50, 9471.
3. For reviews of catalytic 1,4-addition to electron-deficient alkenes, see: (a)
Christoffers, J.; Koripelly, G.; Rosiak, A.; Rössle, M. Synthesis 2007, 1279; (b)
Tsogoeva, S. B. Eur. J. Org. Chem 2007, 1701.
4. For a review of a-alkylation and alkenylation using unsaturated carbon-carbon
12. (a) Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2005, 7, 3757; (b) Suto,
Y.; Kumagai, N.; Matsunaga, S.; Kanai, M.; Shibasaki, M. Org. Lett. 2003, 5, 3147;
(c) Motoki, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2007, 9, 2997; (d) Shi, S.-L.;
Kanai, M.; Shibasaki, M. Angew. Chem., Int. Ed. 2012, 51, 3932.
bonds, see: Dênês, F.; Pêrez-L. A. Chemla, F. Chem. Rev. 2010, 110, 2366–2447.
5. For selected examples of active methylene compounds as nucleophiles, see:
intramolecular reactions: (a) Pei, T.; Widenhoefer, R. A. J. Am. Chem. Soc. 2001,
123, 11290; Intermolecular reactions: (b) Yao, X.; Li, C.-J. J. Am. Chem. Soc. 2004,
126, 6884; (c) Yao, X.; Li, C.-J. J. Org. Chem. 2005, 70, 5752; (d) Li, Y.; Yu, Z.; Wu,
S. J. Org. Chem. 2008, 73, 5647; (e) Hirase, K.; Iwahama, T.; Sakaguchi, S.; Ishii, Y.
J. Org. Chem. 2002, 67, 970; (f) Kagayama, T.; Fuke, T.; Sakaguchi, S.; Ishii, Y. Bull.
Chem. Soc. Jpn. 2005, 78, 1673; (g) Endo, K.; Hatakeyama, T.; Nakamura, M.;
Nakamura, E. J. Am. Chem. Soc. 2007, 129, 5264.
6. For selected examples of aldehydes as nucleophiles, see: intermolecular
reactions: (a) Beeson, T. D.; Mastracchio A.; Hong, J-B.; Ashton, K.;
MacMillan, D. W. C. Science 2007, 316, 582–585; (b) Jang, H.-Y.; Hong, J.-B.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 7004–7005; (c) Graham, T. H.;
Jones, C. M.; Jui, N. T.; MacMillan, D. W. C. J. Am. Chem. Soc. 2008, 130, 16494–
16495; Intramolecular reactions: (d) Montaignac, B.; Vitale, M. R.;
Ratovelomanana-Vidal, V.; Michelet, V. Eur. J. Org. Chem. 2011, 3723; (e)
Montaignac, B.; Vitale, M. R.; Ratovelomanana-Vidal, V.; Michelet, V. J. Org.
Chem. 2010, 75, 8322; (f) Montaignac, B.; Vitale, M. R.; Michelet, V.;
Ratovelomanana-Vidal, V. Org. Lett. 2010, 12, 2582; (g) Binder, J. B.; Crone, B.;
Haug, T. T.; Menz, H.; Kirsch, S. F. Org. Lett. 2008, 10, 1025; (h) Montaignac, B.;
Östlund, V.; Vitale, M. R.; Ratovelomanana-Vidal, V.; Michelet, V. Org. Biomol.
Chem. 2012, 10, 2300.
13. (a) For other examples of the use of copper alkoxide catalysts, see: (a) Appella,
D. H.; Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald, S. L. J. Am. Chem. Soc.
1999, 121, 9473 (enantioselective conjugate reduction).; (b) Ito, H.; Yamanaka,
H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821. conjugate
borylation; (c) Yazaki, R.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2010,
132, 10275. enantioselective allylcyanide addition; (d) Iwata, M.; Yazaki, R.;
Chen, I.-H.; Sureshkumar, D.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2011,
113, 5554. enantioselective aldol-type reaction; (e) Asano, Y.; Hara, K.; Ito, H.;
Sawamura, M. Org. Lett. 2007, 9, 3901. enantioselective alkynylation; (f) Zhong,
C.; Kunii, S.; Kosaka, Y.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132,
11440. enantioselective allylic substitution; (g) Do, H. Q.; Khan, R. M. K.;
Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185. arylation of arene C–H; (h)
Nakatani, A.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2012, 14, 2586.
allenylation of polyfluoroarenes.
14. For review of copper olefin complexes, see: a Wang, X.-S.; Zhao, H.; Li, Y.-H.;
Xiong, R.-G.; You, X.-Z. Top. Catal. 2005, 35, 43; For an X-ray structure of
cationic Cu(I)–styrene p-complex, see: (b) Quan, R. W.; Li; Zhen; Jacobsen, E. N.
J. Am. Chem. Soc. 1996, 118, 8156.
15. Nakamura, E.; Nakamura, M.; Miyachi, Y.; Koga, N.; Morokuma, K. J. Am. Chem.
Soc. 1993, 115, 99.
7. For reactions using stoichiometric metal sources, see: (a) Nakamura, M.;
Hatakeyama, T.; Hara, K.; Nakamura, E. J. Am. Chem. Soc. 2003, 125, 6362; (b)
Nakamura, M.; Hatakeyama, T.; Nakamura, E. J. Am. Chem. Soc. 2004, 126,
11820; (c) Hatakeyama, T.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2008,
16. Consistent with this tendency, the corresponding
a-alkylation product was not
produced using acetophenone as the starting ketone.