58
J. M. Yost et al.
SHORT PAPER
by DIPEA (0.17 mL, 1.0 mmol). Stirring was continued for 12 h,
then EtOAc (2.5 mL) and aq. HCl (10% v/v, 2.5 mL) were added.
Stirring was continued for 5 min then the mixture was diluted in
EtOAc (50 mL). The aqueous phase was extracted with EtOAc
(3 × 10 mL) and the combined organic extracts were washed with
brine (1 × 5 mL), dried (MgSO4), and evaporated to give a light-yel-
low oil. Flash chromatography over silica gel (EtOAc–hexanes,
10:90→15:85) gave 25 syn and anti as pure, colorless solids.
ESI-MS: m/z [M + Na]+ calcd for C33H41NNaO3S2: 586.2; found:
586.4.
3
1H NMR (CDCl3): d = 7.73–7.64 (m, 2 H), 7.51–7.02 (m, 13 H),
5.75 (d, J = 7.6 Hz, 1 H), 4.82 (q, J = 6.8 Hz, 1 H), 3.16 and 3.06 (d
AB q, JAB = 40.7 Hz, J = 6.4, 15.6 Hz, 2 H).
13C NMR (CDCl3): d = 195.7, 140.3, 138.8, 134.5, 132.6, 129.8,
129.4, 129.0, 128.7, 128.1, 127.2, 126.9, 126.6, 55.2, 49.6.
ESI-MS: m/z [M + Na]+ calcd for C21H19NNaO3S2: 420.1; found:
420.1.
25 (syn)
Yield: 0.130 g (48.3%); colorless solid.
1H NMR (CDCl3): d = 7.61–7.56 (m, 2 H), 7.41–6.90 (m, 10 H),
5.67 (d, J = 9.2 Hz, 1 H), 4.46 (t, J = 9.2 Hz, 1 H), 3.32–3.14 [m,
2 H, including a qd at d = 3.27 (J = 6.8, 9.2 Hz)], 2.83 (sept, J = 6.8
Hz, 1 H), 2.43–2.27 (m, 1 H), 1.47 (d, J = 6.8 Hz, 3 H), 1.20 (d,
J = 6.8 Hz, 6 H), 1.13–1.03 (m, 6 H), 0.88–0.75 (m, 6 H).
13C NMR (CDCl3): d = 199.6, 152.6, 152.1, 151.2, 140.5, 138.4,
132.4, 128.8, 128.5, 127.8, 127.4, 127.2, 122.0 (2 overlapping
peaks), 120.9, 60.6, 54.0, 34.4, 31.8, 31.5, 24.5, 24.2, 23.94, 23.91,
23.6, 23.2, 16.4.
15
1H NMR (CDCl3): d = 7.86–7.81 (m, 2 H), 7.51–7.11 (m, 13 H),
6.33 (d, J = 16.0 Hz, 1 H), 5.92 (dd, J = 7.2, 16.0 Hz, 1 H), 5.42 (d,
J = 8.4 Hz, 1 H), 4.44–4.34 (m, 1 H), 3.02 (d, J = 5.2 Hz, 2 H).
13C NMR (CDCl3): d = 195.9, 140.8, 135.8, 134.5, 132.6, 129.8,
129.4, 129.1, 128.6, 128.1, 127.2, 126.8, 126.6, 126.5 (2 overlap-
ping peaks), 53.5, 48.4.
ESI-MS: m/z [M + Na]+ calcd for C23H21NNaO3S2: 446.1; found:
446.2.
ESI-MS: m/z [M + Na]+ calcd for C31H39NNaO3S2: 560.2; found:
560.3.
25 (anti)
Acknowledgment
Yield: 0.025 g (9.3%); colorless solid.
We thank Marina G. Dickens of the Duke University Chemistry
Department for obtaining the X-ray crystal structure of syn-25.
1H NMR (CDCl3): d = 7.61–7.56 (m, 2 H), 7.40–6.97 (m, 10 H),
6.23 (d, J = 9.2 Hz, 1 H), 4.67 (dd, J = 4.4, 9.6 Hz, 1 H), 3.36–3.22
[m, 2 H, including a dq at d = 3.30 (J = 4.4, 6.8 Hz)], 2.87 (sept,
J = 6.8 Hz, 1 H), 2.69–2.57 (m, 1 H), 1.40 (d, J = 7.2 Hz, 3 H), 1.23
(d, J = 6.8 Hz, 6 H), 1.18–1.09 (m, 6 H), 1.02–0.85 (m, 6 H).
References
(1) (a) Benaglia, M.; Cinquini, M.; Cozzi, F. Eur. J. Org. Chem.
2000, 563. (b) Hart, D. J.; Ha, D.-C. Chem. Rev. 1989, 89,
1447.
13C NMR (CDCl3): d = 202.6, 152.7, 152.1, 151.6, 141.2, 138.9,
132.2, 128.7, 128.4, 127.4, 126.8, 126.4, 122.2 (2 overlapping
peaks), 120.7, 60.6, 53.1, 34.5, 32.0, 31.6, 24.6, 24.2, 24.0, 23.9,
23.7, 23.4, 17.2.
ESI-MS: m/z [M + Na]+ calcd for C31H39NNaO3S2: 560.2; found:
560.3.
(2) For a recent example of an enolate addition to N-alkyl-
imines, see: Tanaka, S.-y.; Tagashira, N.; Chiba, K.; Yasuda,
M.; Baba, A. Angew. Chem. Int. Ed. 2008, 47, 6620.
(3) For pioneering applications of soft enolization in direct
carbon–carbon bond formation, see: (a) Rathke, M. W.;
Cowan, P. J. J. Org. Chem. 1985, 50, 2622. (b) Rathke, M.
W.; Nowak, M. J. Org. Chem. 1985, 50, 2624. (c) Tirpak,
R. E.; Olsen, R. S.; Rathke, M. W. J. Org. Chem. 1985, 50,
4877.
29 (syn)
1H NMR (CDCl3): d = 7.84–7.78 (m, 2 H), 7.45–7.00 (m, 10 H),
6.17 (d, J = 16.0 Hz, 1 H), 5.82 (dd, J = 8.4, 16.0 Hz, 1 H), 5.35 (d,
J = 8.8 Hz, 1 H), 4.08 (app q, J = 7.6 Hz, 1 H), 3.34–3.05 [m, 3 H,
including an app pent at d = 3.10 (J = 6.8 Hz)], 2.88 (sept, J = 7.2
Hz, 1 H), 1.40 (d, J = 7.2 Hz, 3 H), 1.24 (d, J = 7.2 Hz, 6 H), 1.16–
0.96 (m, 12 H).
(4) Lim, D.; Zhou, G.; Livanos, A. E.; Fang, F.; Coltart, D. M.
Synthesis 2008, 2148.
(5) (a) Yost, J. M.; Zhou, G.; Coltart, D. M. Org. Lett. 2006, 8,
1503. (b) Zhou, G.; Yost, J. M.; Coltart, D. M. Synthesis
2007, 478. (c) Zhou, G.; Lim, D.; Coltart, D. M. Org. Lett.
2008, 10, 3809.
13C NMR (CDCl3): d = 201.1, 152.6, 152.2, 151.5, 141.0, 135.9,
134.2, 132.6, 129.0, 128.5, 128.2, 127.4, 126.6, 124.7, 122.2 (2
overlapping peaks), 120.8, 59.4, 52.6, 34.4, 32.0, 24.4, 24.2, 23.9,
23.6, 23.5, 15.6.
ESI-MS: m/z [M + Na]+ calcd for C33H41NNaO3S2: 586.2; found:
586.4.
(6) (a) Gizecki, P.; Youcef, R. A.; Poulard, C.; Dhal, R.;
Dujardin, G. Tetrahedron Lett. 2004, 45, 9589. (b) Wenzel,
A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.
(7) 1 and 6 are commercially available (Aldrich).
(8) All sulfonylimines used here, with the exception of
commercially available 1 (Aldrich), were prepared by
condensation of the corresponding aldehyde and
benzenesulfonamide according to: Jin, T.-S.; Yu, M.-J.; Liu,
L.-B.; Zhao, Y.; Li, T.-S. Synth. Commun. 2006, 36, 2339.
(9) Thioester 17 is commercially available (Aldrich). 16, 18 and
19 were prepared from the corresponding commercially
available (Aldrich) thiols under typical conditions.5a The
thiol used in the synthesis of 20 was prepared according to:
Garrattz, D. G.; Beaulieu, P. L. Can. J. Chem. 1980, 58,
2737.
29 (anti)
1H NMR (CDCl3): d = 7.83–7.77 (m, 2 H), 7.46–6.98 (m, 10 H),
6.26 (d, J = 16.0 Hz, 1 H), 5.85 (dd, J = 6.6, 16.0 Hz, 1 H), 5.75 (d,
J = 9.2 Hz, 1 H), 4.28–4.19 (m, 1 H), 3.40–3.02 [m, 3 H, including
a dq at d = 3.19 (J = 4.0, 7.0 Hz)], 2.88 (sept, J = 6.8 Hz, 1 H), 1.39
(d, J = 7.0 Hz, 3 H), 1.30–0.84 [m, 18 H, including a d at d = 1.24
(J = 6.8 Hz)].
13C NMR (CDCl3): d = 202.7, 152.6, 152.2, 151.6, 141.7, 135.9,
132.4 (2 overlapping peaks), 129.0, 128.5, 128.1, 127.1, 126.7,
126.5, 122.2 (2 overlapping peaks), 120.7, 58.8, 51.5, 34.5, 32.0,
24.3, 24.2, 24.0, 23.9, 23.7, 23.4, 16.2.
Synthesis 2009, No. 1, 56–58 © Thieme Stuttgart · New York