ORGANIC
LETTERS
2009
Vol. 11, No. 6
1445-1448
Stereoselective DABCO-Catalyzed
Synthesis of
(E)-r-Ethynyl-r,ꢀ-Unsaturated Esters
from Allenyl Acetates
Yongsik Choe and Phil Ho Lee*
National Research Laboratory for Catalytic Organic Reaction, Department of
Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon
National UniVersity, Chuncheon 200-701, Republic of Korea
Received January 27, 2009
ABSTRACT
(E)-r-Ethynyl-r,ꢀ-unsaturated esters were exclusively prepared in good to excellent yields from treatment of allenyl acetates with 10 mol %
DABCO in DMF at room temperature.
The construction of R-ethynyl-R,ꢀ-unsaturated esters is one
of the challenging problems in synthetic organic chemistry.1
In fact, many efficient synthetic methods for the preparation
of these compounds have been reported for decades.2
However, the need for a highly stereoselective synthesis of
(E)-R-ethynyl-R,ꢀ-unsaturated esters has remained.1 In gen-
eral, the stereoselective synthesis of these compounds was
accomplished by the transition metal-catalyzed cross-
coupling reactions of (Z)-R-halo-R,ꢀ-unsaturated esters with
terminal alkynes (Sonogashira reaction). Nevertheless, this
method is limited because the stereoselective preparation of
(Z)-R-halo-R,ꢀ-unsaturated esters is difficult and isomeriza-
tion of these compounds somewhat occurred during the cross-
coupling reactions.3 Although a highly stereoselective syn-
thesis of (Z)-R-halo-R,ꢀ-unsaturated esters via CrCl2-
mediated olefinations of aldehydes with trihaloacetates was
reported,4 the preparation of these compounds through
bromination-dehydrobromination,5 rearrangements,6 alkoxy-
carbonylation,7 deoxygenation of glycidic esters,8 thermal
eliminations,9 or Wittig/Horner-Emmons/ Peterson-type con-
densations10 often suffer from poor stereoselectivities,
unsatisfactory yields, costly reagents, and/or lengthy proce-
dures.11 Therefore, we tried to prepare exclusively (E)-R-
(3) (a) Zhang, X.; Qing, F.-L.; Yang, Y.; Yu, J.; Fu, X.-K. Tetrahedron
Lett. 2000, 41, 2953. (b) Olpp, T.; Bru¨ckner, R. Synthesis 2004, 2135.
(4) Barma, D. K.; Kundu, A.; Zhang, H.; Mioskowski, C.; Falck, J. R.
J. Am. Chem. Soc. 2003, 125, 3218.
(1) (a) Tsuboi, S.; Kuroda, H.; Takatsuka, S.; Fukawa, T.; Sakai, T.;
Utaka, M. J. Org. Chem. 1986, 58, 5952. (b) Rossi, R.; Bellina, F.; Bechini,
C.; Mannina, L.; Vergamini, P. Tetrahedron 1998, 54, 135. (c) Shi, W.;
Xiao, F.; Wang, J. J. Org. Chem. 2005, 70, 4318. (d) Wang, Y.; Burton,
D. J. Org. Lett. 2006, 8, 5295. (e) Lemay, A. B.; Vulic, K. S.; Ogilvie,
W. W. J. Org. Chem. 2006, 71, 3615. (f) Tsukada, N.; Niomiya, S.; Ayoama,
Y.; Inoue, Y. Org. Lett. 2007, 9, 2919.
(5) (a) Forti, L.; Ghelfi, F.; Pagnoni, U. M. Tetrahedron Lett. 1995, 36,
3023. (b) Kim, K. M.; Park, I. H. Synthesis 2004, 2641.
(6) Kruper, W. J., Jr.; Emmons, A. H. J. Org. Chem. 1991, 56, 3323.
(7) Alami, M.; Crousse, B.; Linstrumelle, G. Tetrahedron Lett. 1995,
36, 3687.
(2) (a) Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L.; Vergamini, P.
Tetrahedron 1998, 54, 135. (b) Trost, B. M.; Gunzner, J. L.; Yasukata, T.
Tetrahedron Lett. 2001, 42, 3775. (c) Dai, W.-M.; Wu, A.; Hamaguchi,
W. Tetrahedron Lett. 2001, 42, 4211. (d) Lemay, A.; Vulic, K.; Ogilivie,
W. J. Org. Chem. 2006, 71, 3615.
(8) Buschmann, E.; Schafer, B. Tetrahedron 1994, 50, 2433.
(9) (a) Satoh, T.; Itoh, N.; Onda, K.; Kitoh, Y.; Yamakawa, K. Bull.
Chem. Soc. Jpn. 1992, 65, 2800. (b) Ishihara, T.; Shintani, A.; Yamanaka,
H. Tetrahedron Lett. 1998, 39, 4865.
10.1021/ol9001703 CCC: $40.75
Published on Web 02/16/2009
2009 American Chemical Society