962
B. Menéndez Pérez, J. Hartung / Tetrahedron Letters 50 (2009) 960–962
Table 2
Formation of 2,5-disubstituted tetrahydrofurans 5/6 via aerobic cobalt-catalyzed oxidation of (Z)-configurated bishomoallylic alcohols (Z)-3/4
OH
n
H
H
H
H
Ph
OH
O2 / CoL2
O
O
Ph
Ph
RZ
RZ
+
β
solvent / 60 °C
RZ
3–4 h
5/6
7/8
(Z)-3/4
cis/trans < 1/99
cis/trans < 1/99
Entry
3/4
RE
Solvent
CoLn/mol %
Convn.
5/6/% (dr)a,b
7/8/%a
1
2
3
4
5
(Z)-3
(Z)-3
(Z)-4
(Z)-4
(Z)-4
CH3
CH3
C6H5
C6H5
C6H5
iPrOH
C6H6/CHD
iPrOH
iPrOH
C6H6/CHD
1a/10
1a/10
1a/10
1b/20
1a/10
Quant.
96
98
44
89
5: 61 (39:61)
5: 9 (38:62)
6: 17 (35:65)
6: 9 (67:33)
6: 16 (31:69)
7: 8c
7: 71d
8: 1e
8: –f,g
8: 47h
a
cis-5–8 were not detected (GC, NMR).
b
c
Diastereomeric ratio with respect to configuration at Cb (GC).
Additional product: 2-acetyl-5-phenyltetrahydrofuran (8%).
Additional product: 2-acetyl-5-phenyltetrahydrofuran (5%).
d
e
Additional products: 5-phenyltetrahydrofuran-2-one (3%),17 1,5-diphenyl pentan-1-ol (23%),21 1,5-diphenyl pentane-1,5-diol (33%),19,20 (Z)-1,5-diphenyl pent-4-en-1-
one (3%),14 1,5-diphenyl pentan-5-ol-1-one (6%).18
f
Not detected.
g
Additional product: 1,5-diphenyl pentan-1-ol (19%).21
h
Additional products: 1,5-diphenyl pentan-1-ol (11%),21 (Z)-1,5-diphenyl pent-4-en-1-one (3%) 14.
17. Brown, H. C.; Kulkarni, S. V.; Racherla, U. S. J. Org. Chem. 1994, 59, 365–369.
Acknowledgments
18. Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. 1993, 115, 830–846.
19. Zhang, H.-C.; Harris, B. D.; Costanzo, M. J.; Lawson, E. C.; Maryanoff, C. A.;
Maryanoff, B. E. J. Org. Chem. 1998, 63, 7964–7981.
20. Clerici, A.; Pastori, N.; Porta, O. Eur. J. Org. Chem. 2002, 3326–3335.
21. Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. J. Org. Chem. 2001, 66, 9020–9022.
22. . Tetrahedron:Asymmetry 1993, 4, 1711–1754.
This work was supported by the Deutscher Akademischer Aust-
auschdienst (ISGS, TU Kaiserslautern; scholarschip for B.M.). Fur-
thermore, we wish to express our gratitude to Dr. Arne Ludwig
for providing samples of alkenols (E)-4, (Z)-3, and (Z)-4, and finally
to Dipl.-Chem. Dominik Schuch for helpful discussions.
23. Hartung, J.; Gottwald, T.; Špehar, K. Synthesis 2002, 1469–1498.
24. Satisfactory analytical data were obtained for all new compounds prepared in
the study.
25. UV/vis (iPrOH): kmax (lg
e
/m2 mÀo1lÀ1) = 231 (3.28), 326 (3.29), 429 nm
References and notes
~
(qualitative). IR (NaCl)
v
3434 cm
,
2925, 1624, 1590, 1516, 1375, 1280,
1178, 1136, 905, 682. 19F NMR (CDCl3/acetone 565 MHz): d À55.4. Anal. Calcd
for C26H20O5F12Co  EtOH: C, 44.65; H, 2.88. Found: C, 44.49; H, 3.07.
1. Henrici-Olivé, G.; Olivé, S. Angew. Chem. 1974, 86, 1–12. Angew. Chem., Int. Ed.
Engl., 1974, 13, 29–38.
26. trans-(Tetrahydro-5-phenylfur-2-yl)phenylmethanol trans-(6): A solution of
(E)-1,5-diphenylpent-4-en-1-ol (E)-(4) (0.5 mmol) and cobalt(II) complex 1a
(0.10 equiv) in iPrOH (8 mL/mmol) was stirred at 60 °C for 2 h in a stationary
oxygen atmosphere. The reaction mixture is allowed to cool to 20 °C
afterwards. CH2Cl2 (6 mL/mmol) and Et2O (4 mL/mmol) were added. The
solution was washed with satd aq Na2S2O3 soln (3 Â 5 mL/mmol). Combined
Na2S2O3 washings were extracted with Et2O (2 Â 4 mL/mmol). (i) GC Analysis:
n-decane was added as internal standard to combined organic layers to afford a
solution which was quantitatively analyzed by GC via independently measured
responsivity factors. (ii) Preparative scale experiments: combined organic
layers were dried (MgSO4) to afford a solution that was concentrated under
reduced pressure. The remaining residue was purified by column
2. Basolo, F.; Hoffman, B. M.; Ibers, J. A. Acc. Chem. Res. 1975, 8, 384–392.
3. Drago, R. S.; Corden, B. B. Acc. Chem. Res. 1980, 13, 353–360.
4. For review on the chemistry of cobalt(II) compounds in aerobic oxidation
catalysis see: Samándi, L. I. In Advances in Catalytic Activation of Dioxygen by
Metal Complexes; Simándi, L. I., Ed.; Kluwer Academic: Dordrecht, 2003; pp
265–328.
5. For a recent review on stereoselective tetrahydrofuran synthesis: Wolfe, J. P.;
Hay, M. B. Tetrahedron 2007, 63, 261–290.
6. Hartung, J.; Greb, M. J. Organomet. Chem. 2002, 661, 67–84.
7. For a review on related aerobic oxidations see: Mukaiyama, T.; Yamada, T. Bull.
Chem. Soc. Jpn. 1995, 68, 17–35.
8. Inoki, S.; Mukaiyama, T. Chem. Lett. 1990, 67–70.
chromatography (SiO2). Isomer
1
(minor): Rf = 0.41 [SiO2, acetone/
9. Menéndez Pérez, B.; Schuch, D.; Hartung, J. Org. Biomol. Chem. 2008, 6, 3532–
3541.
pentane = 1/5 (v/v)]. 1H NMR (CDCl3, 600 MHz): d 1.64–2.35 (m, 4H), 4.47
(mc, 1H), 5.08 (m, 2H), 7.26–7.49 (m, 10H). 13C NMR (CDCl3, 150 MHz): d 25.4,
35.4, 73.9, 82.0, 83.9, 125.5, 126.0, 127.3, 127.4, 128.3, 128.4, 140.1, 143.1. MS
(70 eV, EI): m/z (%) 236 (M+ÀH2O, 25), 220 (3), 179 (5), 147 (23), 129 (25), 117
(38), 115 (38), 107 (35), 105 (54), 104 (50), 91 (100), 77 (49), 65 (16), 51 (24).
Isomer 2 (major): Rf = 0.27 [SiO2, acetone/pentane = 1/5 (v/v)]. 1H NMR (CDCl3,
600 MHz): d 1.66–2.50 (m, 4H), 3.63–3.69 (m, 1H), 4.25 (d, J = 8.9 Hz, 1H), 4.58
(dd, J = 10.7, 2.0 Hz, 1H), 7.26–7.50 (m, 10H). 13C NMR (CDCl3, 150 MHz): d
32.2, 33.7, 71.6, 79.8, 85.3, 125.8, 127.4, 127.5, 128.3, 128.4, 128.6, 137.5,
142.3. MS (70 eV, EI): m/z (%) 236 (M+ÀH2O, 5), 148 (11), 130 (16), 117 (10),
115 (10), 104 (100), 91 (36), 77 (18), 65 (6), 51 (13).
10. Wang, Z.-M.; Tian, S.-K.; Shi, M. Tetrahedron: Asymmetry 1999, 10, 667–670.
11. Menéndez Pérez, B.; Schuch, D.; Hartung, J. In Bolm, C.; Hahn, E. (Eds.),
Activating Unreactive Substrates; Wiley-VCH: Weinheim, in Press.
12. Hsu, E. C.; Holzwarth, G. J. Am. Chem. Soc. 1973, 95, 6902–6906.
13. Kimura, M.; Ezoe, A.; Mori, M.; Iwata, K.; Tamaru, Y. J. Am. Chem. Soc. 2006, 128,
8559–8568.
14. Ludwig, A. Ph.D. Thesis, TU Kaiserslautern. Kaiserslautern, Germany, 2008.
15. Nakamura, M.; Miki, M.; Majima, T. J. Chem. Soc., Perkin Trans. 1 2000, 415–420.
16. Schmitt, A.; Reißig, H.-U. Chem. Ber. 1995, 128, 871–876.