J. Am. Chem. Soc. 1997, 119, 9309-9310
9309
Table 1. Catalytic Re(Me2SO) Oxidation of Thiolsa and Dithiolsb
Rhenium-Catalyzed Oxidation of Thiols and
Disulfides with Sulfoxides
Jeffrey B. Arterburn,* Marc C. Perry, Sherry L. Nelson,
Benjamin R. Dible, and Mylena S. Holguin
Department of Chemistry and Biochemistry
New Mexico State UniVersity, Box 30001/3C
Las Cruces, New Mexico 88003
ReceiVed June 18, 1997
Oxidation reactions of organosulfur compounds hold continu-
ing fascination for chemists because of their fundamental roles
in biochemical and industrial processes and the variety of
mechanistic pathways involved.1 The oxidation of thiols to
disulfides 1 is a characteristic reaction, and further oxidation
to disulfide S-oxides (thiosulfinates 2) and 1,1-dioxides (thio-
sulfonates 3) is also possible. Weak S-S bonds in these com-
pounds impart high reactivity,2 and in natural products, these
moieties and related cyclic analogues 4 are associated with
a Reaction conditions: I:Me2SO:thiol ) 0.05:2:2, 25 °C. b 0.05:2:
1, 25 °C, slow addition of dithiol/CH2Cl2. c Product isolated by column
chromatography. d Product isolated by recrystallization from MeOH/
interesting biological activity and DNA-cleaving properties.3-5
Direct oxidation of disulfides has been accomplished using
peroxides,6 periodate,7 dimethyldioxirane,8 and perborate,6c
although careful control of oxidant stoichiometry and reaction
conditions are necessary to avoid overoxidation and S-S bond
cleavage.
We recently reported a mild method for oxidizing dialkyl
and monoaryl sulfides to sulfoxides using a rhenium catalyst
[Re(O)Cl3(PPh3)2, I]9 and phenyl sulfoxide (Ph2SO).10 Sulfox-
ides are intriguing as oxidants because of their greater stability
relative to peroxides and their suitability for safer, environmen-
tally benign oxidation processes.11 The oxidizing abilities of
sulfoxides have been harnessed by molybdenum-containing
oxotransferase enzymes such as dimethyl sulfoxide reductase,12
and it has been hypothesized that thiols could function as
external reductants.13 Thiols are powerful reductants in vivo
and are oxidized by sulfoxides to disulfides (eq 1) at high
temperatures14 or under acid/base catalysis.15 On the basis of
these observations, we investigated the possibility of rhenium-
catalyzed oxidation of thiols and disulfides with sulfoxides. We
f
Et2O. e Product isolated by bulb-to-bulb distillation. Ratio determined
1
by H NMR.
report here a remarkably effective method for oxidizing thiols
to disulfides using methyl sulfoxide (Me2SO) and the catalyst
precursor I. This system also exhibits synthetically valuable
oxygen atom transfer chemistry, producing cyclic thiosulfinate
4 directly from reactions of 1,3-propanedithiol. The catalytic
Re(Ph2SO) system was found to be even more effective for oxo
transfer reactions, reacting with a variety of alkyl, aryl, and
cyclic disulfides.
2R-SH + R′2SO f R-S-S-R + R′2S + H2O (1)
A series of thiols were oxidized to disulfides rapidly by the
catalytic Re(Me2SO) system (Table 1). Primary alcohol,
carboxylic acid, ester, and protonated amine functional groups
were unaffected during the oxidation of the thiols. Dithiols were
particularly interesting substrates for the catalytic Re(Me2SO)
oxidation, given the propensity of I toward formation of
dithiolate complexes16 and general interest in metal-thiolate
complexes.17 Slow addition of 1,2-, 1,3-, and 1,4-dithiols to
the catalytic Re(Me2SO) reaction mixture resulted in the
products shown in Table 1. Catalytic Re(Me2SO) oxidation of
(1) Organic Sulfur Chemistry: Structure and Mechanism; Oae, S., Ed.;
CRC Press: Boca Raton, FL, 1991; Vol. 1.
(2) Block, E.; O’Connor, J. J. Am. Chem. Soc. 1974, 96, 3921-3929.
(3) Block, E. Angew. Chem., Int. Ed. Engl. 1992, 31, 1135-1178.
(4) (a) Teuber, L. Sulfur Rep. 1990, 9, 257-349. (b) Pattenden, G.;
Shuker, A. J. J. Chem. Soc., Perkin Trans. 1 1992, 1215-1221. (c) Kanda,
Y.; Fukuyama, T. J. Am. Chem. Soc. 1993, 115, 8451-8452.
(5) (a) Behroozi, S. J.; Kim, W.; Gates, K. S. J. Org. Chem. 1995, 60,
3964-3966. (b) Behroozi, S. J.; Kim, W.; Dannaldson, J.; Gates, K. S.
Biochemistry 1996, 35, 1768-1774.
(12) (a) Hille, R. Chem. ReV. 1996, 96, 2757-2816. (b) Schultz, B. E.;
Gheller, S. F.; Muetterties, M. C.; Scott, M. J.; Holm, R. H. J. Am. Chem.
Soc. 1993, 115, 2714-2722. (c) Schultz, B. E.; Holm, R. H. Inorg. Chem.
1993, 32, 4244-4248. (d) Schultz, B. E.; Hille, R.; Holm, R. H. J. Am.
Chem. Soc. 1995, 117, 827-828.
(13) Caradonna, J. P.; Harlan, E. W.; Holm, R. H. J. Am. Chem. Soc.
1986, 108, 7856-7858.
(14) (a) Yiannios, C. N.; Karabinos, J. V. J. Org. Chem. 1963, 28, 3246-
3249. (b) Wallace, T. J. J. Am. Chem. Soc. 1964, 86, 2018-2021. (c)
Wallace, T. J.; Mahon, J. J. J. Am. Chem. Soc. 1964, 86, 4099-4103. (d)
Fristad, W.; Peterson, J. Synth. Commun. 1985, 15, 1-5.
(6) (a) Bass, S. W.; Evans, S. A. J. Org. Chem. 1980, 45, 710-715. (b)
Macke, J. D.; Field, L. J. Org. Chem. 1988, 53, 396-402. (c) Singh, P. K.;
Field, L.; Sweetman, B. J. J. Org. Chem. 1988, 53, 2608-2612. (d)
Bhattacharya, A. K.; Hortmann, A. G. J. Org. Chem. 1978, 43, 2728-
2730. (e) Freeman, F.; Lee, C. J. Org. Chem. 1988, 53, 1263-1266. (f)
Block, E.; Bayer, T. J. Am. Chem. Soc. 1990, 112, 4584-4585. (g) Folkins,
P. L.; Harpp, D. N.; Vincent, B. R. J. Org. Chem. 1991, 56, 904-906. (h)
Folkins, P. L.; Harpp, D. N. J. Am. Chem. Soc. 1993, 115, 3066-3070.
(7) (a) Oae, S.; Takata, T. Tetrahedron Lett. 1980, 21, 3213-3216. (b)
Takata, T.; Kim, Y. H.; Oae, S. Bull. Chem. Soc. Jpn. 1981, 54, 1443-
1447. (c) Juaristi, E.; Cruz-Sanchez, J. S. J. Org. Chem. 1988, 53, 3334-
3338. (d) Evans, B. J.; Doi, J. T.; Musker, W. K. J. Org. Chem. 1990, 55,
2337-2344.
(8) (a) Glass, R. S.; Liu, Y. Tetrahedron Lett. 1994, 35, 3887-3888.
(b) Derbesy, G.; Harpp, D. N. J. Org. Chem. 1995, 60, 1044-1052.
(9) Trichlorooxobis(triphenylphosphine)rhenium(V), ReOCl3(PPh3)2
(I): Johnson, N. P.; Lock, C. J. L.; Wilkinson, G. Inorg. Synth. 1967, 9,
145-148.
(10) Arterburn, J. B.; Nelson, S. L. J. Org. Chem. 1996, 61, 2260-
2261.
(15) (a) Wallace, T. J.; Mahon, J. J. J. Org. Chem. 1965, 30, 1502-
1507. (b) Burdon, M. G.; Moffatt, J. G. J. Am. Chem. Soc. 1966, 88, 5855-
5864. (c) Lowe, O. G. J. Org. Chem. 1975, 40, 2096-2098. (d) Aida, T.;
Akasaka, T.; Furukawa, N.; Oae, S. Bull. Chem. Soc. Jpn. 1976, 49, 1441-
1442. (e) Tamamura, H.; Otaka, A.; Nakamura, J.; Okubo, K.; Koide, T.;
Ikeda, K.; Ibuka, T.; Fujii, N. Int. J. Pept. Protein Res. 1995, 45, 312-
319. (f) Otaka, A.; Koide, T.; Shide, A.; Fujii, N. Tetrahedron Lett. 1991,
32, 1223-1226. (g) Akaji, K.; Tatsumi, T.; Yoshida, M.; Kimura, T.;
Fujiwara, Y.; Kiso, Y. J. Am. Chem. Soc. 1992, 114, 4137-4143. (h) Akaji,
K.; Fujino, K.; Tatsumi, T.; Kiso, Y. J. Am. Chem. Soc. 1993, 115, 11384-
11392. (i) Oxidation to the corresponding sulfonic acids can occur: Lowe,
O. G. J. Org. Chem. 1976, 41, 2061-2064.
(11) The activation of Me2SO with various electrophiles is widely used
for the mild “Swern” oxidation of alcohols. For a recent review, see:
Tidwell, T. T. Synthesis 1990, 857-870.
(16) 1,2-Ethanedithiol reacts with I to give [ReO(SCH2CH2S)2]-
:
Blower, P. J.; Dilworth, J. R.; Hutchinson, J. P.; Nicholson, T.; Zubieta, J.
J. Chem. Soc., Dalton Trans. 1986, 1339-1345.
S0002-7863(97)02013-1 CCC: $14.00 © 1997 American Chemical Society