Stereocontrolled Approach to Phenyl Cyclitols
SCHEME 1. 4-Hydroxy-4-Substituted
2,5-Cyclohexadienones as Starting Materials in Asymmetric
Synthesis
SCHEME 2. Conjugate Additions on Enantiopure
4-Hydroxy-4-[(p-tolylsulfinyl)methyl]-2,5-cyclohexadienone
(SR)-1 and Applications in Asymmetric Synthesis
enones en route to 3-aryl ketones. The procedure was applied
to trisubstituted enones and allowed the access to quaternary
centers at the ꢀ-position. More recently, Alexakis10 reported
the enantioselective copper-catalyzed 1,4-aryl transfer of ary-
laluminum reagents to trisubstituted cyclic enones in the
presence of chiral phosphoramidite ligands, leading to quaternary
stereocenters. In spite of the advances reached, the stereose-
lective introduction of alkyl or aryl groups to symmetrically
4,4-disubstituted cyclohexadienones or 4-hydroxy-4-alkyl-
substituted cyclohexadienones (p-quinols) remains a challenge
in asymmetric synthesis due to the symmetry of such prochiral
moieties, where up to four diastereomers can be formed during
the conjugate addition. The stereoselective differentiation of the
two diastereotopic conjugate positions (pro-R and pro-S) and
the two different faces for each conjugate attack poses a
challenging problem whose efficient solution is of huge synthetic
interest due to the multifunctional nature and potential synthetic
utility of the p-quinol unit (Scheme 1).11
Efficient desymmetrizations of cyclohexadienone moieties
have only been achieved by Feringa,12 using a BINOL phos-
phoramidite ligand, in the Cu-catalyzed enantioselective 1,4-
additions of dialkyl zinc derivatives to p-benzoquinone monoket-
als and 4-alkoxy-4-alkyl-substituted cyclohexadienones. We
have found that (SR)-[(p-tolylsulfinyl)methyl]-p-quinol deriva-
tives such as 1, bearing a CH2-sulfoxide substituent at C-4,13
reacted with organoaluminum reagents (alkyl, alkenyl, or
alkynyl), leading to the exclusive formation of 1,4-conjugate
addition products in the absence of any other metal catalyst,14
in a highly chemo- and π-facial diastereoselective manner
(Scheme 2). The efficient desymmetrization of the prochiral
dienone moiety, reacting exclusively from the pro-S double bond
syn to the face containing the C-4 OH, allowed the controlled
formation of two stereogenic centers in a single step. Further-
more, we observed that the ꢀ-hydroxysulfoxide present in the
resulting 1,4-adducts could be regarded as a chiral equivalent
of a ketone, which can be recovered after oxidation to sulfone
and mild basic treatment.15 Both findings allowed us to
synthesize different chiral nonracemic alkyl hydroxy-substituted
cyclohexenones such as phorenol,15 as well as different natural
polyoxygenated cyclohexane derivatives16 and C-4 oxygenated
angucyclinones.17
Despite the rich latent functionality of enantiopure cyclo-
hexadienones, they had never been used for the synthesis of
aryl-substituted polyhydroxycyclohexane derivatives,18,19 prob-
ably due to the lack of efficient desymmetrization methods,
allowing the introduction of aryl nucleophiles to the p-quinols
in a conjugate and stereoselective manner. The efficient con-
struction of such derivatives is of huge interest since these
moieties are present in a group of natural products, the
Amaryllidaceae family and analogues20 that show important
biological properties, including anticancer activity. The potential
usefulness of p-quinols as starting materials for such interest
chiral targets prompted us to extend the scope of the conjugated
additions of 4-[(p-tolylsulfinyl)methyl]-p-quinols to aryl orga-
nometallics. We now report our results evidencing that the
remote sulfoxide is able to direct the reaction of 1 with aryl
organoaluminum reagents, leading to the 1,4-conjugate addition
products in a stereocontrolled manner without adding any
catalyst. C-aryl-substituted polyoxygenated cyclohexanes were
obtained by further transforming the initial 1,4-adducts through
a series of stereoselective reactions and the elimination of the
ꢀ-hydroxysulfoxide, after oxidation to sulfone, to recover a
ketone. The overall sequence can be regarded as an umpolung
(15) Carren˜o, M. C.; Pe´rez-Gonza´lez, M.; Ribagorda, M.; Somoza, A.;
Urbano, A. Chem. Commun. 2002, 3052–3053.
(16) Synthesis of natural polyhydroxycyclohexanes: (a) Carren˜o, M. C.;
Merino, E.; Ribagorda, M.; Somoza, A.; Urbano, A. Chem.sEur. J. 2007, 13,
1064–1077. (b) Carren˜o, M. C.; Merino, E.; Ribagorda, M.; Somoza, A.; Urbano,
A. Org. Lett. 2005, 7, 1419–1422.
(17) Synthesis of angucyclinones: (a) Carren˜o, M. C.; Ribagorda, M.; Somoza,
A.; Urbano, A. Chem.sEur. J. 2007, 13, 879–890. (b) Carren˜o, M. C.; Ribagorda,
M.; Somoza, A.; Urbano, A. Angew. Chem., Int. Ed. 2002, 41, 2755–2757.
(18) (a) Posternak, T. The Cyclitols; Holden-Day: San Francisco, CA, 1962.
(b) Hudlicky, T.; Cebulak, M. Cyclitols and Their DeriVatiVes: A Handbook of
Physical, Spectral, and Synthetic Data; VCH: New York, 1993. (c) Delgado,
A. Eur. J. Org. Chem. 2008, 3893–3906. (d) Marco-Contelles, J.; Molina, M. T.;
Anjum, S. Chem. ReV. 2004, 104, 2858–2899.
(8) (a) Varchi, G.; Ricci, A.; Cahiez, G.; Knochel, P. Tetrahedron 2000, 56,
2727–2731. (b) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp,
F.; Korn, T.; Sapountzis, I.; Anh Vu, V. Angew. Chem., Int. Ed. 2003, 42, 4302–
4320, and references cited therein.
(9) Westermann, J.; Imbery, U.; Nguyen, A. T.; Nickisch, K. Eur. J. Inorg.
Chem. 1998, 295–298.
(10) (a) Hawner, C.; Li, K.; Cirriez, V.; Alexakis, A. Angew. Chem., Int.
Ed. 2008, 47, 8211–8214. (b) Vuagnoux-D’Augustin, M.; Alexakis, A.
Chem.sEur. J. 2007, 13, 9647–9662. (c) Alexakis, A.; Albrow, V.; Biswas, K.;
D’Augustin, M.; Prieto, O.; Woodward, S. Chem. Commun. 2005, 2843–2845.
(11) Magdziak, D.; Meek, S. J.; Pettus, T. R. R. Chem. ReV. 2004, 104, 1383–
1429.
(12) (a) Imbos, R.; Minnaard, A. J.; Feringa, B. L. Tetrahedron 2001, 57,
2485–2489. (b) Imbos, R.; Brilman, M. H. G.; Pineschi, M.; Feringa, B. L. Org.
Lett. 1999, 1, 623–625.
(13) (a) Carren˜o, M. C.; Pe´rez-Gonza´lez, M.; Ribagorda, M.; Houk, K. N.
J. Org. Chem. 1998, 63, 3687–3693. (b) Carren˜o, M. C.; Pe´rez Gonza´lez, M.;
Ribagorda, M.; Fischer, J. J. Org. Chem. 1996, 61, 6758–6759.
(14) For the enantioselective asymmetric conjugate additions of trialkyl
aluminum reagents to trisubstituted enones in the presence of chiral Cu catalysts,
see ref 10.
(19) For synthesis of polyhydroxylated cyclohexanes, see for example: (a)
Ley, S. V. Pure Appl. Chem. 1990, 62, 2031–2034. (b) Motherwell, W. B.;
Williams, A. S. Angew. Chem., Int. Ed. Engl. 1995, 34, 203–213. (c) Hudlicky,
T.; Gonzalez, D.; Gibson, D. Aldrichimica Acta 1999, 32, 35–62. (d) Angelaud,
R.; Babot, O.; Charvat, T.; Landais, Y. J. Org. Chem. 1999, 64, 9613–9624. (e)
Crich, D.; Grant, D.; Wink, D. J. J. Org. Chem. 2006, 71, 4521–4524.
(20) (a) Kornienko, A.; Evidente, A. Chem. ReV. 2008, 108, 1982–2014. (b)
Rinner, U.; Hudlicky, T. Synlett 2005, 365–387. (c) Martin, S. F. In The Alkaloids;
Brossi, A. R., Ed.; Academic Press: New York, 1987; Vol. 40, pp 251-376. (d)
Polt, R. L. In Organic Synthesis: Theory and Applications; HudlickyT., Ed.;
JAI Press: New York, 1997; Vol. 3, pp 109-148. (e) Hoshino, O. In The
Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 1998; Vol. 51, pp
323-424. (f) Kireev, A. S.; Nadein, O. N.; Agustin, V. J.; Bush, N. E.; Evidente,
A.; Manpadi, M.; Ogasawara, M. A.; Rastogi, S. K.; Rogelj, S.; Shors, S. T.;
Kornienko, A. J. Org. Chem. 2006, 71, 5694–5707.
J. Org. Chem. Vol. 74, No. 7, 2009 2825