11 L. Martijn, G.-J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra,
J. C. Hummelen and P. W. M. Blom, Adv. Mater., 2008, 20, 2116–
2119.
12 C.-P. Chen, S.-H. Chan, T. C. Chao, C. Ting and B.-T. Ko, J. Am.
Chem. Soc., 2008, 130, 12828–12833.
13 S.-H. Chan, C.-P. Chen, T. C. Chao, C. Ting, C.-S. Lin and B.-T. Ko,
Macromolecules, 2008, 41, 5519–5526.
14 F. B. Kooistra, J. Knol, F. Kastenberg, L. M. Popescu,
W. J. H. Verhees, J. M. Kroon and J. C. Hummelen, Org. Lett.,
2007, 9, 551–554.
15 (a) P. A. Troshin, H. Hoppe, J. Renz, M. Egginger, J. Yu. Mayorova,
A. E. Goryachev, A. S. Peregudov, R. N. Lyubovskaya, G. Gobsh,
N. S. Sariciftci and V. F. Razumov, Adv. Funct. Mater., 2009, 19,
779–788; (b) J. A. Renz, P. A. Troshin, G. Gobsch, V. F. Razumov
and H. Hoppe, Phys. Status Solidi RRL, 2008, 2(6), 263–265.
16 M. Meneghetti, R. Signorini, M. Zerbetto, R. Bozio, M. Maggini,
G. Scorrano, M. Prato, G. Brusatin, E. Menegazzo and
M. Guglielmi, Synth. Met., 1997, 86, 2353–2354.
Conclusion
In summary, we have carried out the rational design of
fulleropyrrolidine derivatives as the acceptor partner with poly-
3-hexylthiophene (P3HT) and established that N-methoxyethox-
yethyl-2-(2-methoxyphenyl)fulleropyrrolidine (1p) might take the
position of [C60]-PCBM. The important advantages of the use of
the fulleropyrrolidine 1p are in its stable nature under ambient
conditions and its ease of preparation; these characteristics make
it possible to reduce the production cost of large-area polymer
solar cells.
It has been established that the band gap of the acceptor
between the LUMO and HOMO strongly depends on the donor
polymer; in fact, several more efficient polymers superior to P3HT
have been developed using [C60]-PCBM as the acceptor.10–15
Therefore, we expect that we will be able to develop efficient donor
polymers which are appropriate for our fulleropyrrolidine deriv-
atives. Further investigation into the development of novel donor
polymers as a partner of our fulleropyrrolidine will allow the
creation of even more efficient solar cells in the near future.
ꢀ
17 J. L. Segura, E. M. Priego, N. Martın, C. Luo and D. M. Guldi, Org.
Lett., 2000, 2, 4021–4024.
18 J. L. Segura, E. M. Priego and N. Martın, Tetrahedron Lett., 2000, 41,
ꢀ
7737–7741.
19 A. Dhanabalan, J. Knol, J. C. Hummelen and R. A. J. Janssen, Synth.
Met., 2001, 119, 519–522.
20 S. Bosi, M. Prato, M. Carano, F. Paolucci, D. M. Guldi,
M. Meneghetti, R. Signorini and R. Bozio, Nonlinear Opt., 2001,
27, 367–376.
Acknowledgements
21 H.-P. Zeng, T. Wang, A. S. D. Sandanayaka, Y. Araki and O. Ito,
J. Phys. Chem. A, 2005, 109, 4713–4720.
The computations were performed at the Research Center for
Computational Science in Okazaki (Japan).
22 G. Possamai, S. Marcuz, M. Maggini, E. Menna, L. Franco,
M. Ruzzi, S. Ceola, C. Corvaja, G. Ridolfi, A. Geri, N. Camaioni,
D. M. Guldi, R. Sens and T. Gessner, Chem.–Eur. J., 2005, 11,
5765–5776.
23 G. Rotas and N. Tagmatsrchis, Tetrahedron Lett., 2009, 50, 398–401.
24 T. Itoh, M. Mishiro, K. Matsumoto, S. Hayase, M. Kawatsura and
M. Morimoto, Tetrahedron, 2008, 64, 1823–1828.
Notes and references
1 (a) M. Prato and M. Maggini, Acc. Chem. Res., 1998, 31, 519–526; (b)
F. Diederich and R. Kessinger, Acc. Chem. Res., 1999, 32, 537–545;
(c) Z. Zhou and S. R. Wilson, Curr. Org. Chem., 2005, 9, 789–811.
2 N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science,
1992, 258, 1474–1476.
3 (a) H. Imahori and Y. Sakata, Adv. Mater., 1997, 9, 537–546; (b)
€
S. Gunes, H. Neugebauer and N. S. Sariciftci, Chem. Rev., 2007,
107, 1324–1338.
4 J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao and
C. L. Wilkins, J. Org. Chem., 1995, 60, 532–538.
5 F. Padinger, R. S. Rittberger and N. S. Sariciftci, Adv. Funct. Mater.,
2003, 13, 85–88.
6 M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol,
J. C. Hummelen, P. A. vanHal and R. A. J. Janssen, Angew. Chem.,
Int. Ed., 2003, 42, 3371–3375.
7 C. Shi, Y. Yao, Y. Yang and Q. Pei, J. Am. Chem. Soc., 2006, 128,
8980–8986.
8 J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong and
A. J. Heeger, Adv. Mater., 2006, 18, 572–576.
25 P. Sofou, Y. Elemes, E. Panou-Pomonis, A. Stavrakoudis,
V. Tsikaris, C. Sakarellos, M. Sakarellos-Daitsiotis, M. Maggini,
F. Formaggio and C. Toniolo, Tetrahedron, 2004, 60, 2823–2828.
26 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz,
Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson,
W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03,
Revision E.01, Gaussian, Inc., Wallingford CT, 2004.
9 N. Camaioni, L. Garlaschelli, A. Geri, M. Maggini, G. Possamai and
G. J. Ridolfi, J. Mater. Chem., 2002, 12, 2065–2070.
10 J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante
and A. J. Hegger, Science, 2007, 317, 222–225.
9230 | J. Mater. Chem., 2010, 20, 9226–9230
This journal is ª The Royal Society of Chemistry 2010