2590
M. Alajarin et al. / Tetrahedron 65 (2009) 2579–2590
25. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press:
Oxford, UK, 1990.
26. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345–375.
´
Seneca-CARM (Project 08661/PI/08). M.-M. Ortin thanks the Fun-
´
dacion Cajamurcia for a fellowship. Thanks are given to Prof. Ibon
Alkorta for helpful comments.
´
27. Domingo, L. R.; Saez, J. A.; Zaragoza, R. J.; Arno, M. J. Org. Chem. 2008, 73,
4615–4624.
28. (a) Ross, J. A.; Seiders, R. P.; Lemal, D. M. J. Am. Chem. Soc. 1976, 98, 4325–4327;
(b) Birney, D. M.; Wagenseller, P. E. J. Am. Chem. Soc. 1994, 116, 6262–6270; (c)
Wagenseller, P. E.; Birney, D. M.; Roy, D. J. Org. Chem. 1995, 60, 2853–2859; (d)
Birney, D. M. J. Org. Chem. 1996, 61, 243–251; (e) Birney, D. M.; Xu, X.; Ham, S.
Angew. Chem., Int. Ed. 1999, 38, 189–193; (f) Fabian, W. M. F.; Kappe, C. O.;
Bakulev, V. A. J. Org. Chem. 2000, 65, 47–53; (g) de Lera, A. R.; Alvarez, R.; Lecea,
B.; Torrado, A.; Cossio, F. P. Angew. Chem., Int. Ed. 2001, 40, 557–561; (h) Birney,
D. M. Org. Lett. 2004, 6, 851–854; (i) Cabaleiro-Lago, E. M.; Rodriguez-Otero, J.;
Garcia-Lopez, R. M.; Pen˜a-Gallego, A.; Hermida-Ramon, J. M. Chem.dEur. J.
2005, 11, 5966–5974; (j) Jones, G. O.; Xuechen, L.; Hayden, A. E.; Houk, K. N.;
Danishefsky, S. J. Org. Lett. 2008, 10, 4093–4096.
29. For our previous results on pseudopericyclic reactions see: (a) Alajarin, M.;
Ortin, M.-M.; Sanchez-Andrada, P.; Vidal, A. J. Org. Chem. 2006, 71, 8126–8139;
(b) Alajarin, M.; Ortin, M.-M.; Sanchez-Andrada, P.; Vidal, A.; Bautista, D. Org.
Lett. 2005, 7, 5281–5284; (c) Alajarin, M.; Sanchez-Andrada, P.; Vidal, A.; Tovar,
F. J. Org. Chem. 2005, 70, 1340–1349; (d) Lisowskaya, N. A.; Alajarin, M.; San-
chez-Andrada, P. Eur. J. Org. Chem. 2005, 1468–1475; (e) Alajarin, M.; Sanchez-
Andrada, P.; Cossio, F. P.; Arrieta, A.; Lecea, B. J. Org. Chem. 2001, 66, 8470–8477;
(f) Alajarin, M.; Vidal, A.; Sanchez-Andrada, P.; Tovar, F.; Ochoa, G. Org. Lett.
2000, 2, 965–968.
30. Silva, C.; Nieto, O.; Souto, J. A.; Alvarez, R.; de Lera, A. J. Comput. Chem. 2007, 28,
1411–1416.
31. Tsuji, Y.; Richard, J. P. J. Am. Chem. Soc. 2006, 128, 17138–17145.
32. Smolinsky, G. J. J. Org. Chem. 1961, 26, 4108–4110.
33. Cuevas, J. C.; Mendoza, J.; Prados, P. J. Org. Chem. 1988, 53, 2055–2066.
34. Alajarin, M.; Lopez-Lazaro, A.; Vidal, A.; Berna, J. Chem.dEur. J. 1998, 4,
2558–2570.
35. Merrill, S. H.; Unruh, C. C. U.S. Patent 3,002,003, 1959; Chem. Abstr. 1962, 56,
4961i.
Supplementary data
Supplementary data associated with this article can be found in
References and notes
1. (a) Newman, M. S.; Karnes, H. A. J. Org. Chem. 1966, 31, 3980–3984; (b) Kwart,
H.; Evans, E. R. J. Org. Chem. 1966, 31, 410–412; For a recent review see: (c)
Lloyd-Jones, G. C.; Moseley, J. D.; Renny, J. S. Synthesis 2008, 661–689.
2. (a) Relles, H. M.; Pizzolato, G. J. Org. Chem. 1968, 33, 2249–2253; (b) Miyazaki, K.
Tetrahedron Lett. 1968, 9, 2793–2798; (c) For a computational study on the
mechanism of the Newman–Kwart rearrangement see: Jacobsen, H.; Donahue,
J. Can. J. Chem. 2006, 84, 1567–1574.
3. (a) Gilday, J. P.; Lenden, P.; Moseley, J. D.; Cox, B. G. J. Org. Chem. 2008, 73, 3130–
3134; (b) Moseley, J. D.; Lenden, P. Tetrahedron 2007, 63, 4120–4125; (c) Mo-
seley, J. D.; Lenden, P.; Thomson, A. D.; Gilday, J. P. Tetrahedron Lett. 2007, 48,
6084–6087; (d) Moseley, J. D.; Sankey, R. F.; Tang, O. N.; Gilday, J. P. Tetrahedron
2006, 62, 4685–4689.
4. Sakamoto, M.; Yoshiaki, M.; Takahashi, M.; Fujita, T.; Watanabe, S. J. Chem. Soc.,
Perkin Trans. 1 1995, 373–375.
5. (a) Harano, K.; Kiyonaga, H.; Hisano, T. Tetrahedron Lett. 1991, 32, 7557–7558;
(b) Hayashi, T. Tetrahedron Lett. 1990, 31, 4155–4158; (c) Ziegler, F. E.; Zheng,
Z.-L. Tetrahedron Lett. 1987, 28, 5973–5976; (d) Gais, H.-J.; Bo¨hme, A. J. Org.
Chem. 2002, 67, 1153–1161; (e) Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc.
1973, 95, 553–563.
6. Young, D. W.; Robinson, M. J. T. Tetrahedron Lett. 1987, 28, 3631–3632.
´
´
J.; Vilaplana, M. J. Synthesis 1982,
36. (a) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford
University Press: New York, NY, 1989; (b) Bartolotti, L. J.; Fluchichk, K. In Reviews
in Computational Chemistry; Lipkowitz, K. B., Boyds, D. B., Eds.; VCH: New York,
NY, 1996; Vol. 7, pp 187–216; (c) Kohn, W.; Becke, A. D.; Parr, R. G.
J. Phys. Chem.1996, 100,12974–12980; (d) Ziegler, T. Chem. Rev.1991, 91, 651–667.
37. Hariharan, P. C.; Pople, J. Theor. Chim. Acta 1973, 28, 213–222.
38. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz,
J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03 Re-
vision B.03; Gaussian: Pittsburgh, PA, 2003.
7. Molina, P.; Alajarın, M.; Fresneda, P. M.; Lidon,
598–599.
8. (a) Scho¨nberg, A.; Vargha, J. Chem. Ber. 1930, 63, 178–180; (b) Freudengerg, K.;
Wolf, A. Chem. Ber. 1927, 60, 232–238; (c) Nayak, U. G.; Whistler, R. L. J. Org.
Chem. 1969, 34, 3819–3822; (d) Scho¨nberg, A. Justus Liebigs Ann. Chem. 1930,
483, 107–114.
9. Villemin, D.; Hachemi, M. Synth. Commun. 1996, 26, 2449–2459.
10. Degani, I.; Fochi, R.; Regondi, V. Synthesis 1981, 149–151.
11. (a) Diana, M. B.; Marchetti, M.; Melloni, G. Tetrahedron: Asymmetry 1995, 6,
1175–1179; (b) Harano, K.; Shinohara, I.; Murase, M.; Hisano, T. Heterocycles
1987, 26, 2583–2586; (c) Harano, K.; Kiyonaga, H.; Sugimoto, S.-I.; Matsuoka, T.;
Hisano, T. Heterocycles 1988, 27, 2327–2330; (d) Harano, K.; Shinohara, I.; Su-
gimoto, S.-I.; Matsuoka, T.; Hisano, T. Chem. Pharm. Bull. 1989, 37, 576–581.
12. Cristol, S. J.; Seapy, D. G. J. Org. Chem. 1982, 47, 132–136.
13. (a) Alajarin, M.; Vidal, A.; Ortin, M.-M. Tetrahedron Lett. 2003, 44, 3027–3030;
(b) Alajarin, M.; Vidal, A.; Ortin, M.-M. Org. Biomol. Chem. 2003, 1, 4282–4292;
(c) Alajarin, M.; Vidal, A.; Ortin, M.-M.; Bautista, D. New J. Chem. 2004, 28, 570–
577; (d) Alajarin, M.; Vidal, A.; Ortin, M.-M.; Bautista, D. Synlett 2004, 991–994.
14. Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635–646.
15. Only when 4-CH3–C6H4CH2OC(S)NHPh was heated in toluene solution under
vigorous conditions (sealed tube, 140 ꢀC, 48 h) a 40% of conversion to the re-
arranged 4-CH3–C6H4CH2SC(O)NHPh was observed.
16. Carl, P. L.; Chakravarty, P. K.; Katzenellenbogen, J. A. J. Med. Chem.1981, 24, 479–480.
17. (a) Warnecke, A.; Kratz, F. J. Org. Chem. 2008, 73, 1546–1552; (b) Greenwald, R.
B.; Pedri, A.; Conover, C. D.; Zhao, H.; Choe, Y. H.; Martinez, A.; Shum, K.; Guan,
S. J. Med. Chem. 1999, 42, 3657–3667; (c) For a review, see: Wakselman, M. Nouv.
J. Chem. 1983, 7, 439–447.
18. (a) Damen, E. W. P.; Nevalainen, T. J.; van der Berg, T. J. M.; de Groot, F. M. H.;
Scheeren, H. W. Bioorg. Med. Chem. 2002, 10, 71–77; (b) Griffin, R. J.; Evers, E.;
Davidson, R.; Gibson, A. E.; Layton, D.; Irwing, W. J. J. Chem. Soc., Perkin Trans. 1
1996, 1205–1211.
39. (a) Fukui, K. J. Phys. Chem. 1970, 74, 4161–4162; (b) Fukui, K. Acc. Chem. Res.
1981, 14, 363–368.
40. (a) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523–5527; (b) Gon-
zalez, C.; Schlegel, H. B. J. Chem. Phys. 1991, 95, 5853–5860.
41. Wiberg, K. B. Tetrahedron 1968, 24, 1083–1096.
42. (a) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735–746;
(b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899–926; (c)
Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434–1445.
43. Borden, W. T.; Loncharich, R. J.; Houk, K. N. Annu. Rev. Phys. Chem. 1988, 39,
213–236.
44. (a) Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027–2094; (b) Simkin, B. Y.;
Sheikhet, I. Quantum Chemical and Statistical Theory of Solutions: A Computa-
tional Approach; Ellis Horwood: London, UK, 1995, pp 78–101.
45. (a) Miertus, S.; Scrocco, E.; Tomasi, J. J. Chem. Phys. 1981, 55, 117–129; (b)
Cammi, R.; Tomasi, J. J. Chem. Phys. 1994, 100, 7495–7502; (c) Barone, V.; Cossi,
M.; Tomasi, J. J. Chem. Phys. 1997, 107, 3210–3221.
19. van Brankel, R.; Vulders, R. C. M.; Bokdam, R. J.; Gru¨ll, H.; Robillard, M. Bio-
conjugate Chem. 2008, 19, 714–718.
20. (a) Verkade, J. G.; Kisanga, P. B. Tetrahedron 2003, 59, 7819–7858 and references
cited therein; (b) Liu, X.; Thirupathi, I. A.; Guzei, J. G.; Verkade, J. G. Inorg. Chem.
2004, 43, 7431–7440; (c) Venkat Reddy, Ch.; Verkade, J. G. J. Org. Chem. 2007,
72, 3093–3096.
46. Biegler-Koenig, F. W.; Bader, R. F. W.; Tang, T. H. J. Comput. Chem. 1982, 3, 317–
21. Kukhar, V. P.; Patreshenko, A. A.; Zhumorova, I. N.; Tukhar, A. A.; Solodushenko,
S. N. Zh. Obshch. Khim. 1970, 40, 1696–1699.
22. The planes shown in this figure have been calculated using the software
Mercury 1.4.1. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G.
P.; Taylor, R.; Towler, M.; de Streek, J. v. J. Appl. Crystallogr. 2006, 39, 453–457.
23. Moyano, A.; Pericas, M. A.; Valenti, E. J. Org. Chem. 1989, 54, 573–582.
24. (a) Queral, J. J.; Safont, V. S.; Moliner, V.; Andres, J. Chem. Phys. 1998, 229, 125–
136; (b) Domingo, L. R.; Picher, M. T.; Safont, V. S.; Andres, J.; Chuchani, G.
J. Phys. Chem. A 1999, 103, 3935–3943; (c) Rotinov, A.; Chuchani, G.; Andres, J.;
Domingo, L. R.; Safont, V. S. Chem. Phys. 1999, 246, 1–12.
47. (a) A recent survey of QTAIM theory is due to Popelier P. L. A.; Aicken F.
M.; O’Brien S. E. Chemical Modelling: Applications and Theory; The Royal
Society of Chemistry: Cambridge, UK, 2000;Vol. 1, pp 143–198. See also:
(b) Popelier, P. Atoms in Molecules: An Introduction; Prentice Hall: New
York, NY, 2000; (c) Merino, G.; Vela, A.; Heine, T. Chem. Rev. 2006, 105,
3812–3841; (d) The Quantum Theory of Atoms in Molecules: From Solid
State to DNA and Drug Design; Matta, C. F., Boyd, R. J., Eds.; Wiley-VCH:
Weinheim, 2007.