Dizinc Phosphohydrolase Model
[6]
J. J. Lavigne, E. V. Anslyn, Angew. Chem. Int. Ed. 1999, 38,
3666–3669.
S. L. Wiskur, E. V. Anslyn, J. Am. Chem. Soc. 2001, 123,
10109–10110.
S. C. McCleskey, P. N. Floriano, S. L. Wiskur, E. V. Anslyn,
J. T. McDevitt, Tetrahedron 2003, 59, 10089–10092.
A. M. Piatek, Y. J. Bomble, S. L. Wiskur, E. V. Anslyn, J. Am.
Chem. Soc. 2004, 126, 6072–6077.
B. T. Nguyen, S. L. Wiskur, E. V. Anslyn, Org. Lett. 2004, 6,
2499–2501.
M. Bonizzoni, L. Fabbrizzi, G. Piovani, A. Taglietti, Tetrahe-
dron 2004, 60, 11159–11162.
L. Fabbrizzi, F. Foti, A. Taglietti, Org. Lett. 2005, 7, 2603–
2606.
M. A. Hortala, L. Fabbrizzi, N. Marcotte, F. Stomeo, A. Tagli-
etti, J. Am. Chem. Soc. 2003, 125, 20–21.
M. Boiocchi, M. Bonizzoni, L. Fabbrizzi, G. Piovani, A. Tagli-
etti, Angew. Chem. Int. Ed. 2004, 43, 3847–3852.
L. Fabbrizzi, N. Marcotte, F. Stomeo, A. Taglietti, Angew.
Chem. Int. Ed. 2002, 41, 3811–3814.
L. Fabbrizzi, M. Licchelli, A. Taglietti, Dalton Trans. 2003,
3471–3479.
S. L. Tobey, E. V. Anslyn, Org. Lett. 2003, 5, 2029–2031.
M. H. Lim, S. J. Lippard, Inorg. Chem. 2004, 43, 6366–6370.
S. A. Hilderbrand, M. H. Lim, S. J. Lippard, J. Am. Chem. Soc.
2004, 126, 4972–4978.
M. H. Lim, D. Xu, S. J. Lippard, Nature Chem. Biol. 2006, 2,
375–380.
D. Knapton, M. Burnworth, S. J. Rowan, C. Weder, Angew.
Chem. Int. Ed. 2006, 45, 5825–5829.
Determination of Indicator/Zn2L2 Dissociation Constants: Spectral
data were used to estimate dissociation constants through a varia-
tion of the Benesi–Hildebrand method prescribed by Hammond.[47]
Plots of (∆Abs)–1 vs. [Zn2L2]–1 were constructed for each series of
indicator/receptor complex titration data, followed by a regression
analysis of the data by a linear fit function. Benesi–Hildebrand
plots, along with the corresponding linear regression functions and
coefficients of determination (R2), are provided in the Supporting
Information.
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
Absorption Spectroscopic Titration of Indicator/Zn2L2 Complex
with Phosphorous-Containing Analyte: Indicator (5ϫ10–5 ) and
Zn2L2 (1.5 m) solutions were used for indicator displacement as-
say titrations. Solutions of sodium hydrogen phosphate (1.5 m,
5 mL) and sodium pyrophosphate decahydrate (1.5 m, 5 mL)
were prepared in HEPES buffer (10 m, pH 7.4). Initially 3 mL
of an indicator solution and 100 µL of the Zn2L2 solution (1:1
stoichiometric equivalence) were added to a cuvette, followed by
recording of the respective spectrum. For determination of the abil-
ity of the selected anion (phosphate or pyrophosphate) to displace
the indicator from the indicator/Zn2L2 complex and concomitantly
form an anion/Zn2L2 complex, the indicator/Zn2L2 solution was
titrated in situ with 10 µL aliquots (0.100 equiv. relative to both the
indicator and Zn2L2) aliquots of the anion solution. Individual
spectra were recorded following the addition of each anion aliquot
until a total of 20 aliquots had been added to the indicator solution
(resulting in a 2:1:1 anion/indicator/Zn2L2 stoichiometry). Ti-
trations were iterated in the same manner for all indicator/analyte
combinations. Absorption spectra resulting from the titration of
each indicator-Zn2L2 complex with PPi are provided in the Sup-
porting Information.
[17]
[18]
[19]
[20]
[21]
[22]
[23]
E. J. O’Neil, B. D. Smith, Coord. Chem. Rev. 2006, 250, 3068–
3080.
V. Amendola, M. Bonizzoni, D. Esteban-Gomez, L. Fabbrizzi,
M. Licchelli, F. Sancenon, A. Taglietti, Coord. Chem. Rev.
2006, 250, 1451–1470.
E. V. Anslyn, J. Org. Chem. 2007, 72, 687–699.
Z. Dai, J. W. Canary, New J. Chem. 2007, 31, 1708–1718.
L. Zhang, R. J. Clark, L. Zhu, Chem. Eur. J. 2008, 14, 2894–
2903.
H. R. Horton, L. A. Moran, K. G. Scrimgeour, M. D. Perry,
J. D. Rawn, Principles of Biochemistry, Pearson Prentice Hall,
Upper Saddle River, NJ 2006.
A. K. Rosenthal, Curr. Opin. Rheumatol. 2007, 19, 158–162.
S. K. Kim, D. H. Lee, J.-I. Hong, J. Yoon, Acc. Chem. Res., 21
October 2008 (10.1021/accchemres/ar800003f).
B. P. Morgan, S. He, R. C. Smith, Inorg. Chem. 2007, 46, 9262–
9266.
S. He, S. T. Iacono, S. M. Budy, A. E. Dennis, D. W. Smith,
R. C. Smith, J. Mat. Chem. 2008, 18, 1970–1976.
M. S. Han, D. H. Kim, Angew. Chem. Int. Ed. 2002, 41, 3809–
3811.
W. M. Leevy, S. T. Gammon, H. Jiang, J. R. Johnson, D. J.
Maxwell, E. N. Jackson, M. Marquez, D. Piwnica-Worms,
B. D. Smith, J. Am. Chem. Soc. 2006, 128, 16476–16477.
K. Matsufuji, H. Shiraishi, Y. Miyasato, T. Shiga, M. Ohba, T.
Yokoyama, H. Okawa, Bull. Chem. Soc. Jpn. 2005, 78, 851–
858.
M. M. Benning, H. Shim, F. M. Raushel, H. M. Holden, Bio-
chemistry 2001, 40, 2712.
F. H. Fry, L. Spiccia, P. Jensen, B. Moubaraki, K. S. Murray,
E. R. T. Tiekink, Inorg. Chem. 2003, 42, 5594–5603.
D. H. Lee, J. H. Im, S. U. Son, Y. K. Chung, J.-I. Hong, J. Am.
Chem. Soc. 2003, 125, 7752–7753.
Response of Indicator-Zn2L2 to Other Anions: Indicator-Zn2L2
solutions were prepared as described above for absorption spectro-
scopic studies, and up to 10 equiv. of NaF, NaCl, NaBr, NaI, Na-
O2CCH3, NaP3H10, Na2SO4, NaNO3, Na2CO3 sodium glutamate,
or sodium aspartate was added to each cuvette, followed by collec-
tion of an absorption spectrum. None of these samples exhibited
significant changes in absorption spectra.
[24]
[25]
[26]
[27]
Fluorescence Titration of Indicator-Zn2L2 Complex with Phospho-
rous-Containing Analyte: Fluorescence experiments were executed
in a manner similar to that described above for absorption spectro-
scopic experiments, with the exception that initial indicator concen-
trations of 2.5ϫ10–5 were used.
[28]
[29]
[30]
[31]
[32]
[33]
Supporting Information (see also the footnote on the first page of
this article): 1H and 13C NMR spectra, absorption spectra, fluores-
cence spectra and Benesi–Hildebrand plots.
Acknowledgments
[34]
The authors thank Brad P. Morgan for insightful suggestions and
Clemson University for support. M. K. C. thanks the College of
Engineering and Science for the R. C. Edwards Fellowship.
[35]
[36]
[37]
[38]
[1] B. T. Nguyen, E. V. Anslyn, Coord. Chem. Rev. 2006, 250,
3118–3127.
[2] S. L. Wiskur, H. Ait-Haddou, J. J. Lavigne, E. V. Anslyn, Acc.
Chem. Res. 2001, 34, 963–972.
[3] J. F. Folmer-Andersen, V. M. Lynch, E. V. Anslyn, Chem. Eur.
J. 2005, 11, 5319–5326.
[4] H. Aiet-Haddou, S. L. Wiskur, V. M. Lynch, E. V. Anslyn, J.
Am. Chem. Soc. 2001, 123, 11296–11297.
B. Bauer-Siebenlist, F. Meyer, E. Farkas, D. Vidovic, S. De-
chert, Chem. Eur. J. 2005, 11, 4349–4360.
E. Y. Tshuva, S. J. Lippard, Chem. Rev. 2004, 104, 987–1011.
E. A. Lewis, W. B. Tolman, Chem. Rev. 2004, 104, 1047–1076.
L. Que Jr., W. B. Tolman, Angew. Chem. Int. Ed. 2002, 41,
1114–1137.
[39]
[40]
[41]
[5] S. L. Wiskur, J. J. Lavigne, A. Metzger, S. L. Tobey, V. Lynch,
E. V. Anslyn, Chem. Eur. J. 2004, 10, 3792–3804.
Eur. J. Org. Chem. 2009, 343–348
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
347