286
I. Cikotiene, M. Morkunas
LETTER
(2) (a) Connolly, D. J.; Cusack, D.; O’Sullivan, T. P.; Guiry,
Table 1 Synthesis of 2,4-Disubstituted 7-Aryl-6-methoxycarbonyl-
quinazolines 3a–o9,10
P. J. Tetrahedron 2005, 61, 10153. (b) Hill, M. D.;
Movassaghi, M. Chem. Eur. J. 2008, 14, 6836. (c)Nikpour,
F.; Paibast, T. Chem. Lett. 2005, 34, 1438.
Entry Starting R1
compound
NR2R3
R4
Product Yield
(%)
(3) (a) Wada, A.; Yamamoto, H.; Ohki, K.; Nagai, S.;
Kanatomo, S. J. Heterocycl. Chem. 1992, 29, 911. (b) Kim,
S. K.; Russel, K. C. J. Org. Chem. 1998, 63, 8229.
(4) (a) Cikotiene, I.; Buksnaitiene, R.; Brukstus, A. Chem.
Heterocycl. Comp. 2007, 43, 515. (b) Cikotiene, I.;
Morkunas, M.; Rudys, S.; Buksnaitiene, R.; Brukstus, A.
Synlett 2008, 2799.
(5) Cikotiene, I.; Morkunas, M.; Motiejaitis, D.; Rudys, S.;
Brukstus, A. Synlett 2008, 1693.
(6) Cikotiene, I.; Pudziuvelyte, E.; Brukstus, A.; Tumkevicius,
S. Tetrahedron 2007, 63, 8145.
1
2
1a
1b
1c
1d
1e
1f
SMe
H
N(CH2)4
NH2
H
H
H
H
H
H
H
H
F
3a
3b
3c
3d
3e
3f
86
90
97
98
95
90
87
98
95
90
90
98
85
3
H
PhNH
4
NH2
NH2
SMe
SMe
SMe
SMe
SMe
SMe
SMe
SMe
NH2
5
N(CH2)4O
NH2
6
(7) Crystal structure analysis for 3a: C21H21N3O2S, Mr = 379.47
g mol–1, monoclinic, space group P21/a, a = 7.5916 (2), b =
19.0791 (4), c = 13.2219 (4) Å, a = 90.00°, b = 94.3120 (9)°,
g = 90.00°, V = 1909.65 (9) Å3, r = 1.320 g/cm3, F(000) =
800. X-ray diffraction data were collected on a Nonius
Kappa CCD diffractometer at 293 K using graphite-
monochromated Mo–Ka radiation (l = 0.71073 Å).
Structure 3a was solved by direct methods with SIR97
program11 and refined by full-matrix least squares
techniques with anisotropic non-hydrogen atoms. Hydrogen
atoms were refined in the riding model. The refinement
calculations were carried out with the help of SHELX97
program.12 ORTEP13 view of the molecule is shown in
Figure 1. Crystallographic data for structure 3a have been
deposited at the Cambridge Crystallographic Data Centre
(CCDC number 703429).
(8) (a) Scott, G. P. J. Am. Chem. Soc. 1953, 75, 6332.
(b) Dimroth, K.; Lenke, G. Chem. Ber. 1956, 89, 2608.
(9) Typical Procedure for the Preparation of 2,4-Disub-
stituted 7-Aryl-6-methoxycarbonylquinazolines 3a–o: To
a solution of the corresponding 6-arylethynylpyrimidine-5-
carbaldehyde 1a–o (0.3 mmol) in methanol (5 mL) a
solution of potassium salt of methyl mercaptoacetate,
prepared from potassium (11.7 mg, 0.3 mmol), methyl
mercaptoacetate (31.8 mg, 0.3 mmol) and methanol (3 mL)
was added. The resulting reaction mixture was stirred for 2
h at r.t. The solvent was evaporated under reduced pressure,
the residue was washed with H2O, filtered and recrystallized
to give compounds 3a–o.
7
1g
1h
1k
1l
EtNH
3g
3h
3k
3l
8
PhNH
9
PhNH
10
11
12
13
PhNH
Et
Et
F
1m
1n
1o
N(CH2)4
N(CH2)4
N(CH2)4O
3m
3n
3o
H
toacetate as a trigger for the benzannulation reaction. Tak-
ing into account that ester functionality in the molecules
can undergo further transformations this method for the
synthesis of the title compounds should be useful for the
preparation of various biologically important quinazo-
lines. Extension of these reactions is currently under way
in our laboratory.
Acknowledgment
We express our gratitude to M. Kreneviciene and A. Karosiene for
recording of the NMR and IR spectra, to M. Gavrilova for the ele-
mental analyses data and to Dr. S. Belyakov (Institute of Organic
Synthesis, Ryga, Latvia) for the X-ray measurements.
6-Methoxycarbonyl-2-methylthio-7-phenyl-4-pyrroli-
dinoquinazoline (3a): yield: 86%; mp 185–187 °C (from
MeOH). IR (KBr): 1708 (C=O) cm–1. 1H NMR (300 MHz,
DMSO-d6): d = 2.01 [br s, 4 H, (CH2)2], 2.54 (s, 3 H, SMe),
3.62 (s, 3 H, OMe), 3.92 [br s, 4 H, N(CH2)2], 7.37–7.47 (m,
5 H, ArH), 7.45 (s, 1 H, CH), 8.64 (s, 1 H, CH). 13C NMR
(75 MHz, DMSO-d6): d = 13.4, 25.0, 50.6, 51.9, 11.9, 125.0,
127.2, 127.6, 127.9, 128.1, 129.2, 139.7, 144.8, 152.9,
157.5, 167.4, 168.7. Anal. Calcd for C21H21N3O2S: C, 66.47;
H, 5.58; N, 11.07. Found: C, 66.37; H, 5.53; N, 11.11.
(10) Compounds 2a,b and 3b–o were also fully characterized by
IR, 1H NMR, 13C NMR spectroscopic and microanalytical
data.
(11) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.;
Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.;
Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115.
(12) Sheldrick, G. M. SHELXL97, Program for the Refinement of
Crystal Structures; University of Göttingen: Germany,
1997.
References and Notes
(1) (a) Smaill, J. B.; Rewcastle, G. W.; Bridges, A. J.; Zhou, H.;
Showalter, H. D. H.; Fry, D. W.; Nelson, J. M.; Sherwood,
V.; Elliott, W. L.; Vincent, P. W.; DeJohn, D. E.; Loo, J. A.;
Greis, K. D.; Chan, O. H.; Reyner, E. L.; Lipka, E.; Denny,
W. A. J. Med. Chem. 2000, 43, 3199. (b) Eckhardt, M.;
Langkopf, E.; Mark, M.; Tadayyon, M.; Thomas, L.; Nar,
H.; Pfrengle, W.; Guth, B.; Lotz, R.; Sieger, P.; Fuchs, H.;
Himmelsbach, F. J. Med. Chem. 2007, 50, 6450.
(c) Bavetsias, V.; Skelton, L. A.; Yafai, F.; Mitchell, F.;
Wilson, S. C.; Allan, B.; Jackman, A. L. J. Med. Chem.
2002, 45, 3692. (d) Tsou, H.-R.; Mamuya, N.; Johnson,
B. D.; Reich, M. F.; Gruber, B. C.; Ye, F.; Nilakantan, R.;
Shen, R.; Discafani, C.; DeBlanc, R.; Davis, R.; Koehn,
F. E.; Greenberger, L. M.; Wang, Y.-F.; Wissner, A. J. Med.
Chem. 2001, 44, 2719. (e) Gackenheimer, S. L.; Schaus,
J. M.; Gehlert, D. R. J. Pharmacol. Exp. Ther. 1995, 274,
1558. (f) Dempcy, R. O.; Skibo, E. B. Biochemistry 1991,
30, 8480.
(13) Johnson, C. K. ORTEP-II, Report ORNL-5138; Oak Ridge
National Laboratory: Oak Ridge TN (USA), 1976.
Synlett 2009, No. 2, 284–286 © Thieme Stuttgart · New York