active materials.4 Given this interest, a convenient access to the
enantiomerically pure parent amino acids is of major importance.
Expedient Preparation of All Isomers of
2-Aminocyclobutanecarboxylic Acid in
Enantiomerically Pure Form
While many elegant approaches have been described for the
asymmetric synthesis of ꢀ-amino acids,5 only a few of these
are applicable for the preparation of cyclic compounds.6 The
synthesis of enantiomerically pure cis-cyclobutane ꢀ-amino acid
was described by each of the groups of Ortun˜o7 and Bolm,8
using an approach based on the enantioselective desymmetri-
zation of a derivative of meso-1,2-cyclobutanedicarboxylic acid.9
Recently, we described an alternative approach based on the
[2+2] photocycloaddition reaction of ethene with a nonracemic
uracil derivative, which furnished both enantiomers of the cis
compound.10 A protocol for the transformation of each cis
enantiomer into its corresponding trans isomer was also
described.10a To date, this is the only published preparation of
the trans compounds in enantiomerically pure form. However,
due to the likely increase in demand for these materials for the
above-stated reasons, we sought a more practical access to the
title compound in its various stereochemical forms.
Carlos Fernandes,† Elisabeth Pereira,† Sophie Faure,† and
David J. Aitken*,‡
Laboratoire SEESIB (UMR 6504-CNRS), De´partement de
Chimie, UniVersite´ Blaise Pascal-Clermont-Ferrand 2,
24 AVenue des Landais, 63177 Aubie`re cedex, France, and
Laboratoire de Synthe`se Organique et Me´thodologie,
ICMMO (UMR 8182-CNRS), UniVersite´ Paris-Sud 11,
15 rue Georges Clemenceau, 91405 Orsay cedex, France
ReceiVed January 27, 2009
To this end, racemic cis-2-aminocyclobutanecarboxylic acid,
(()-cis-1, was considered a good entry point. Multigram
quantities of this compound are readily available via a short
photochemical route11 or through conventional transformations
of meso-cyclobutane-1,2-dicarboxylic acid derivatives.7,8,12
The first objective was to optimize the cis-to-trans isomer-
ization procedure. This was a considerably more delicate
operation than the corresponding transformation for the cyclo-
pentane and cyclohexane congeners, generally done with
carboxylic ester derivatives.13 Indeed, basic treatment of an
N-Boc methyl ester derivative of (()-cis-1 was previously
shown to give 60% yield of the trans isomer at best;10a
furthermore, the process is capricious and loss of material is a
A short, convenient, gram scale protocol has been established
to allow facile access to all four stereoisomers of 2-ami-
nocyclobutanecarboxylic acid, each in enantiomerically pure
form (ee >99%). Starting from the readily available cis
racemate, the procedure combines efficient R-phenylethy-
lamine derivative resolution and controlled cis-to-trans
epimerization procedures, and proceeds with invariably high
yields.
(4) Recent patents: (a) Zenkoh, T.; Nozawa, E.; Matsuura, K.; Seo, R. Chem.
Abstr. 2008, 149, 471824. (b) Barchuk, W. T.; Dunford, P. J.; Edwards, J. P.;
Fourie, A. M.; Karlsson, L.; Quan, J. M. Chem. Abstr. 2008, 149, 268051. (c)
Zahn, S. K.; Bister, B.; Boehmelt, G.; Guertler, U.; Mantoulidis, A.; Reiser, U.;
Schoop, A.; Solca, F.; Tontsch-Grunt, U.; Treu, M. Chem. Abstr. 2008, 148,
11249.
(5) (a) EnantioselectiVe Synthesis of ꢀ-Amino Acids, 2nd ed.; Juaristi, E.,
Soloshonok, V. A., Eds.; Wiley-VCH: Weinheim, Germany, 2005. (b) Liu, M.;
Sibi, M. P. Tetrahedron 2002, 58, 7991–8035.
(6) For reviews which include particular mention of cyclobutane ꢀ-amino
acids, see: (a) Ortun˜o, R. M.; Moglioni, A. G.; Moltrasio, G. Y. Curr. Org.
Chem. 2005, 9, 237–259. (b) Ortun˜o, R. M. In EnantioselectiVe Synthesis of
ꢀ-Amino Acids, 2nd ed.; Juaristi, E., Soloshonok, V. A., Eds.; Wiley-VCH:
Weinheim, Germany, 2005; Chapter 5, pp 117-137. (c) Avotins, F. M. Russ.
Chem. ReV. 1993, 62, 897–906.
(7) (a) Mart´ın-Vila`, M.; Muray, E.; Aguado, G. P.; Alvarez-Larena, A.;
Branchadell, V.; Minguillo´n, C.; Giralt, E.; Ortun˜o, R. M. Tetrahedron:
Asymmetry 2000, 11, 3569–3584. (b) Mart´ın-Vila`, M.; Minguillo´n, C.; Ortun˜o,
R. M. Tetrahedron: Asymmetry 1998, 9, 4291–4294.
There is considerable interest in alicyclic ꢀ-amino acids as
intermediates in synthetic chemistry, as structural features in
biologically active compounds, and as valuable components for
the design and synthesis of molecular architectures bestowed
with local or long-ranging self-organizational ability.1 Recently,
cyclobutane ꢀ-amino acids have begun to show a potential that
is comparable with that of their 5- and 6-membered congeners.
A strong tendency for regular structuring in peptides containing
this moiety has been demonstrated,2 and very recently a
cyclobutane ꢀ-tetrapeptide self-assembled to produce nanosized
fibrils.3 Furthermore, patent literature suggests that cyclobutane
ꢀ-amino acid building blocks are increasingly a part of the
molecular inventory for the construction of new biologically
(8) Bolm, C.; Schiffers, I.; Atodiresei, I.; Hackenberger, C. P. R. Tetrahedron:
Asymmetry 2003, 14, 3455–3467.
(9) For a recent review on the desymmetrization of cyclic meso-anhydrides,
see: Atodiresei, I.; Schiffers, I.; Bolm, C. Chem. ReV. 2007, 107, 5683–5712.
(10) (a) Fernandes, C.; Gauzy, C.; Yang, Y.; Pereira, E.; Faure, S.; Aitken,
D. J. Synthesis 2007, 2222–2232. (b) Gauzy, C.; Pereira, E.; Faure, S.; Aitken,
D. J. Tetrahedron Lett. 2004, 45, 7095–7097.
(11) (a) Aitken, D. J.; Gauzy, C.; Pereira, E. Tetrahedron Lett. 2002, 43,
6177–6179. (b) Gauzy, C.; Saby, B.; Pereira, E.; Faure, S.; Aitken, D. J. Synlett
2006, 1394–1398.
† Universite´ Blaise Pascal-Clermont-Ferrand 2.
‡ Universite´ Paris-Sud 11.
(1) Reviews: (a) Fu¨lo¨p, F. Chem. ReV. 2001, 101, 2181–2204. (b) Kuhl, A.;
Hahn, M. G.; Dumic´, M.; Mittendorf, J. Amino Acids 2005, 29, 89–100. (c)
Fu¨lo¨p, F.; Martinek, T. A.; To´th, G. Chem. Soc. ReV. 2006, 35, 323–334.
(2) (a) Izquierdo, S.; Ru´a, F.; Sbai, A.; Parella, T.; Alvarez-Larena, A.;
Branchadell, V.; Ortun˜o, R. M. J. Org. Chem. 2005, 70, 7963–7971. (b) Izquierdo,
S.; Kogan, M. J.; Parella, T.; Moglioni, A. G.; Branchadell, V.; Giralt, E.; Ortun˜o,
R. M. J. Org. Chem. 2004, 69, 5093–5099.
´
´
(12) Kennewell, P. D.; Matharu, S. S.; Taylor, J. B.; Westwood, R.; Sammes,
P. G. J. Chem. Soc., Perkin Trans. 1 1982, 2563–2570.
(3) Ru´a, F.; Boussert, S.; Parella, T.; D´ıez-Pe´rez, I.; Branchadell, V.; Giralt,
E.; Ortun˜o, R. M. Org. Lett. 2007, 9, 3643–3645.
(13) Davies, S. G.; Ichihara, O.; Lenoir, I.; Walters, I. A. S. J. Chem. Soc.,
Perkin Trans. 1 1994, 1411–1414.
10.1021/jo900175p CCC: $40.75
Published on Web 03/16/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 3217–3220 3217