262
M. Nikulnikov et al.
LETTER
(12) Pirrung, M. C.; Ghorai, S. J. Am. Chem. Soc. 2006, 128,
In conclusion, we developed a streamlined two-step, one-
purification approach to medicinally important 5,6-di-
hydropyrazolo[1,5-a]pyrazine-4,7-diones using an Ugi
4CR–post-MCR cyclization approach. We demonstrated
for the first time that in the microwave-assisted cycliza-
tion process, the readily available tert-butyl isocyanide
can function as convertible isocyanide thus offering a
more convenient and economical alternative to previously
used Armstrong’s isocyanide. We are now investigating if
other isocyanides and azole carboxylic acids can be incor-
porated via Ugi reaction into precursors for post-MCR cy-
clization. The results of these studies will be reported in
due course.
11771.
(13) Other reaction conditions that were screened and proved
inefficient for post-MCR cyclization of 3 included
conventional heating in AcOH, conventional and microwave
heating in TFA, as well as using base promoters (KOt-Bu,
NaH) in various solvents (e.g., THF, DMF, dioxane). tert-
Butyl isonitrile was chosen on the basis of its commercial
availability in large quantities. However, we are also finding
it superior to other isocyanides in the present post-MCR
cyclization. These finding will be disclosed in a separate
communication.
(14) Parallel evaporation of volatiles from the microwave reactor
tube was carried out using GeneVac® equipment.
(15) No further purification and characterization (except LC-MS
analysis) of the crude Ugi reaction products 3 were
performed.
Acknowledgment
(16) Characterization Data for Selected Compounds
Compound 2f: white solid, mp 122–123 °C. 1H NMR (300
MHz, CDCl3): d = 7.58 (s, 1 H), 7.50–7.55 (t, J = 8.1 Hz,
1 H), 7.27–7.31 (m, 2 H), 7.19–7.24 (m, 1 H), 7.08–7.13 (m,
3 H), 7.00 (ddd, J = 8.4, 2.5, 1.0 Hz, 1 H), 6.89 (d, J = 8.4
Hz, 2 H), 5.63 (d, J = 14.5 Hz, 1 H), 5.58 (s, 1 H), 3.87 (s, 3
Dr. Dmitry Dmitriev of CDRI is acknowledged for his help in NMR
spectral analyses.
References and Notes
H), 3.82 (s, 3 H), 3.45 (d, J = 14.5 Hz, 1 H), 2.38 (s, 3 H). 13
C
(1) (a) Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39,
3168. (b) Dömling, A. Chem. Rev. 2006, 106, 17.
(2) Hulme, C.; Morrissette, M. M.; Volz, F. A.; Burns, C. J.
Tetrahedron Lett. 1998, 39, 1113.
NMR (75Hz, CDCl3): d = 160.2, 159.7, 159.3, 158.1, 154.3,
138.0, 137.3, 132.1, 131.5, 131.1, 129.8, 129.5, 129.1,
126.6, 126.3, 125.7, 119.1, 116.4, 114.1, 111.1, 110.4, 60.6,
55.0, 54.9, 45.6, 19.2. LC-MS: m/z = 433 [M + H]. Anal.
Calcd for C28H25N3O4: C, 71.93; H, 5.39; N, 8.99. Found: C,
72.04; H, 5.43; N, 9.02.
(3) Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1995,
117, 7842.
Compound 2i: beige solid, mp 152–153 °C (decomp.). 1H
NMR (300 MHz, CDCl3): d = 7.25 (dd, J = 7.4, 5.3 Hz, 2 H),
7.07–7.12 (m, 4 H), 6.83–6.90 (m, 3 H), 5.57 (d, J = 14.5 Hz,
1 H), 5.17 (s, 1 H), 3.79 (s, 3 H), 3.48 (d, J = 14.5 Hz, 1 H),
2.03–2.12 (m, 1 H), 1.05–1.15 (m, 2 H), 0.90–0.96 (m, 2 H).
13C NMR (75Hz, CDCl3): d = 164.0, 162.9 (d, JC–F = 248.5
Hz), 159.5, 159.3, 153.9, 137.2, 129.7, 129.5 (d, JC–F = 2.9
Hz), 128.7 (d, JC–F = 8.6 Hz), 126.1, 116.3 (d, JC–F = 21.7),
114.1, 110.4, 63.3, 54.4, 45.5, 9.2, 9.1, 8.9. LC-MS: m/z =
406 [M + H]. Anal. Calcd for C23H20FN3O3: C, 68.14; H,
4.97; N, 10.36. Found: C, 68.19; H, 5.03; N, 10.39.
(4) Rikimaru, K.; Yanagisawa, A.; Kan, T.; Fukuyama, T.
Synlett 2004, 41.
(5) (a) Isaacson, J.; Gilley, C. B.; Kobayashi, Y. J. Org. Chem.
2007, 72, 3913. (b) Vamos, M.; Ozboya, K.; Kobayashi, Y.
Synlett 2007, 1595.
(6) Walborsky, H. M.; Niznik, G. E. J. Org. Chem. 1972, 37,
187.
(7) (a) Blackburn, C.; Guan, B. Tetrahedron Lett. 2000, 41,
1495. (b) Veljkovic, I.; Zimmer, R.; Reissig, H.-U.;
Bruedgam, I.; Hartl, H. Synthesis 2006, 2677.
(8) Baraldi, P. G.; Cacciari, B.; Leoni, A.; Recanatini, M.;
Roberti, M.; Rossi, M.; Manfredini, S.; Periotto, V.; Simoni,
D. Farmaco 1991, 46, 1337.
Compound 2j: white solid, mp 147–149 °C (decomp.). 1H
NMR (300 MHz, CDCl3): d = 7.61 (d, J = 3.5 Hz, 1 H), 7.48
(s, 1 H), 7.46 (d, J = 5.0 Hz, 1 H), 7.25–7.37 (m, 5 H), 7.12–
(9) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto, G.
7.18 (m, 3 H), 7.02 (t, J = 8.4 Hz, 2 H), 5.76 (s, 1 H). 13
C
Arzneim.-Forsch. 1999, 49, 997.
(10) (a) Baraldi, P. G.; Leoni, A.; Cacciari, B.; Manfredini, S.;
Simoni, D.; Bergomi, M.; Menta, E.; Spinelli, S. J. Med.
Chem. 1994, 37, 4329. (b) Baraldi, P. G.; Leoni, A.;
Cacciari, B.; Manfredini, S.; Simoni, D. Bioorg. Med. Chem.
Lett. 1993, 3, 2511.
(11) Baraldi, P. G.; Casolari, A.; Manfredini, S.; Periotto, V.;
Zanirato, V.; Florio, C.; Traversa, V.; Bertelli, G. M.; Borea,
P. A. Arzneim.-Forsch. 1988, 38, 1262.
NMR (75Hz, CDCl3): d = 162.9 (d, JC–F = 248.5 Hz), 159.6,
153.7, 153.4, 138.1, 137.5, 132.4, 130.2 (d, JC–F = 2.8 Hz),
129.1, 128.7 (d, JC–F = 8.6 Hz), 129.3, 128.0, 127.9, 127.6,
126.7, 116.1 (d, JC–F = 22.1), 111.0, 68.7. LC-MS: m/z = 404
[M + H]. Anal. Calcd for C22H14FN3O2S: C, 65.50; H, 3.50;
N, 10.47. Found: C, 65.54; H, 3.60; N, 10.51.
Synlett 2009, No. 2, 260–262 © Thieme Stuttgart · New York