and, to the best of our knowledge, none provides evidence
for a discrete preorganized intermediate. Thus, we initiated
a study to determine the feasibility of the mechanistic
hypothesis outlined in Figure 1 and, if possible, to develop
conditions to promote such a reaction pathway.
DA reactions of 1a or 1b with 2a or 2b at 120 °C are
unselective, giving nearly equimolar mixtures of the four
possible products 3 (or 7) and 4-6 (Table 1). As a
Figure 1. Diels-Alder reaction where a Lewis acid (LA)
coordinates simultaneously to the diene and dienophile and induces
an “intramolecular” reaction of the resulting complex.
Table 1. Diels-Alder Reactions of 1 with 2
the literature revealed several scattered examples where the
reactivity and/or selectivity observed in Diels-Alder reac-
tions was (or could have been) rationalized by proposing a
favorable noncovalent association of the diene with the
dienophile (e.g., hydrogen bonding9 or coordination to a
Lewis acid10) in the transition state. In particular, two
examples that closely resemble the mechanistic scenario in
Figure 1 were identified: Snider’s “quasi-intramolecular”
hetero-DA reaction (A)11 and Bienayme’s “internally” Lewis
acid-catalyzed DA reaction (B).12 Nonetheless, few if any
of these proposals contemplate an “intramolecular” reaction
diene/
adduct
series 7(or 3):4:5:6b
selectivity
yieldc
(%)
entry dienophile conditionsa
(9) (a) Jones, D. W. J. Chem. Soc., Chem. Commun. 1980, 739-740.
(b) Fisher, M. J.; Hehre, W. J.; Kahn, S. D.; Overman, L. E. J. Am. Chem.
Soc. 1988, 110, 4625-4633. (c) Trost, B. M.; Lee, D. C. J. Org. Chem.
1989, 54, 2271-2274. (d) Macaulay, J. B.; Fallis, A. G. J. Am. Chem. Soc.
1988, 110, 4074-4076. (e) Macaulay, J. B.; Fallis, A. G. J. Am. Chem.
Soc. 1990, 112, 1136-1144. (f) Tripathy, R.; Carrol, P. J.; Thornton, E. R.
J. Am. Chem. Soc. 1990, 112, 6743-6744. (g) Tripathy, R.; Carrol, P. J.;
Thornton, E. R. J. Am. Chem. Soc. 1991, 113, 7630-7640. (h) Hatakeyama,
S.; Sugawara, K.; Takano, S. J. Chem. Soc., Chem. Commun. 1992, 953-
955. (i) Bloch, R.; Chaptal-Gradoz, N. Tetrahedron Lett. 1992, 33, 6147-
6150. (j) Bloch, R.; Chaptal-Gradoz, N. J. Org. Chem. 1994, 59, 4162-
4169. (k) Charlton, J. L.; Maddaford, S. Can. J. Chem. 1993, 71, 827-
833. (l) Kerrigan, J. E.; McDougal, P. G.; VanDerveer, D. Tetrahedron
Lett. 1993, 34, 8055-8058. (m) Greenlee, W. J.; Woodward, R. B.
Tetrahedron 1980, 36, 3367-3375. (n) Schmidlin, T.; Burckhardt, P. E.;
Waespe-Sarcevic, N.; Tamm, C. HelV. Chim. Acta 1983, 66, 450-466. (o)
Schmidlin, T.; Gamboni, R.; Strazewski, P.; Tamm, C. HelV. Chim. Acta
1983, 66, 1796-1805. (p) Strekowski, L.; Kong, S.; Battiste, M. A. J. Org.
Chem. 1988, 53, 901-904. (q) Datta, S. C.; Franck, R. W.; Tripathy, R.;
Quigley, G. J.; Huang, L.; Chen, S.; Sihaed, A. J. Am. Chem. Soc. 1990,
112, 8472-8478.
(10) (a) Metral, J.; Lauterwein, J.; Vogel, P. HelV. Chim. Acta 1986, 69,
1287-1309. (b) Green, R. L.; Nelson, J. H. Organometallics 1987, 6, 2256-
2257. (c) Solujic, Lj.; Milosavljevic, E. B.; Nelson, J. H.; Alcock, N. W.;
Fischer, J. Inorg. Chem. 1989, 28, 3453-3460. (d) Barluenga, J.; Aznar,
F.; Cabal, M.; Cano, F. H.; Concepcion, M.; Foces, F. J. Chem. Soc., Chem.
Commun. 1988, 1247-1249. (e) Barluenga, J.; Aznar, F.; Cabal, M.; Valdes,
C. J. Chem. Soc., Perkin Trans. 1 1990, 633-638. (f) Ward, D. E.; Gai, Y.
Tetrahedron Lett. 1992, 33, 1851-1854. (g) Adams, H.; Jones, D. N.;
Aversa, M. C.; Bonaccorsi, P.; Gianneto, P. Tetrahedron Lett. 1993, 34,
6481-6484. (h) Arce, E.; Carreno, M. C.; Cid, M. B.; Ruano, J. L. C. J.
Org. Chem. 1994, 59, 3421-3426. (i) Renard, P. Y.; Lallemand, J. Y.
Tetrahedron: Asymmetry 1996, 7, 2523-2524. (j) Aversa, M. C.; Barattucci,
A.; Bonaccorsi, P.; Giannetto, P. J. Org. Chem. 1997, 62, 4376-4384. (k)
Aversa, M. C.; Barattucci, A.; Bonaccorsi, P.; Giannetto, P. Tetrahedron:
Asymmetry 1997, 8, 1339-1367.
1
2
3
4
5
6
7
8
1a /2a
1a /2a
1a /2a
1a /2a
1a /2a
1a /2a
1a /2a
1a /2a
120 °C
TiCl4
TiCl2(OiPr)2
SnCl4
EtAlCl2
Et2AlCl
MgBr2‚OEt2
MgBr2‚OEt2,
Et3Ne
MeMgBrf
MeMgBrf,g
MeMgBr,
pentanolf,h
120 °C
a
1.3:1:1.3:1.2
d
d
d
90
d
a
a
a
7 only
7 only
7 only
75
70
75
9
10
11
1a /2a
1a /2a
1a /2a
a
a
a
7 only
7 only
7 only
35
75
95
12
13
14
15
1b/2a
1b/2a
1b/2a
1b/2a
b
b
1:1:1.8:1.4
1:-:2:-
d
d
90
20
Et2AlCl
MgBr2‚OEt2
MgBr2‚OEt2,
Et3Ne
MeMgBr,
pentanolf,h
120 °C
16
1b/2a
d
17
18
19
1a /2b
1a /2b
1a /2b
c
c
c
1.4:1:2:1
3.1:1:6.3:1
7.3:1.4:4.3:1
60
65
25
MgBr2‚OEt2
MeMgBrf,g
a Thermal reactions: a solution of the diene (0.5-2 M) and 2a (2 equiv)
or 2b (1 equiv) in C6D6 was heated for 20-36 h.LA-mediated reactions:
LA (1 equiv) and 2a (2 equiv) or 2b (1 equiv) were sequentially added to
a solution of diene (0.1-0.3 M) in CH2Cl2 at 0 °C and then stirred at ambient
temperature for 10-48 h. b Ratios measured by 1H NMR of the crude
reaction mixture (relative error estimated as (10%). c Isolated. d DA adducts
not detected. e 2 equiv of Et3N. f MeMgBr (3 M in ether) was used; reaction
in toluene. g 0.5 equiv of MeMgBr, reaction for 7 days. h 1 equiv of pentanol
added (cf. note 15); reaction for 2 days.
(11) (a) Snider, B. B.; Phillips, G. B. J. Am. Chem. Soc. 1982, 104, 1113-
1114. (b) Snider, B. B.; Phillips, G. B.; Cordova, R. J. Org. Chem. 1983,
48, 3003-3010.
(12) (a) Bienayme, H.; Longeau, A. Tetrahedron 1997, 53, 9637-9646.
(b) Bienayme, H. Angew. Chem., Int. Ed. Engl. 1997, 36, 2670-2673.
3938
Org. Lett., Vol. 2, No. 24, 2000