J. Matsuo et al. / Tetrahedron Letters 50 (2009) 1917–1919
1919
3. (a) Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem., Int. Ed. 2006, 45, 7086–
7090; (b) Nicolaou, K. C.; Edmonds, D. J.; Li, A.; Tria, G. S. Angew. Chem., Int. Ed.
2007, 46, 3942–3945; (c) Li, P.; Payette, J. N.; Yamamoto, H. J. Am. Chem. Soc.
2007, 129, 9534–9535; (d) Lalic, G.; Corey, E. J. Org. Lett. 2007, 9, 4921–4923;
(e) Nicolaou, K. C.; Pappo, D.; Tsang, K. Y.; Gibe, R.; Chen, D. Y. K. Angew. Chem.,
Int. Ed. 2008, 47, 944–946; (f) Kim, C. H.; Jang, K. P.; Choi, S. Y.; Chung, Y. K.; Lee,
E. Angew. Chem., Int. Ed. 2008, 47, 4009–4011; (g) Zou, Y.; Chen, C.-H.; Taylor, C.
D.; Foxman, B. M.; Snider, B. B. Org. Lett. 2007, 9, 1825–1828; (h) Nicolaou, K. C.;
Tang, Y.; Wang, J. Chem. Commun. 2007, 1922–1923; (i) Tiefenbacher, K.;
Mulzer, J. Angew. Chem., Int. Ed. 2007, 46, 8074–8075; (j) Tiefenbacher, K.;
Mulzer, J. Angew. Chem., Int. Ed. 2008, 47, 2548–2555.
4. (a) Kraus, G. A.; Wang, X. Bioorg. Med. Chem. Lett. 2000, 10, 895–897; (b) Demir,
A. S.; Findik, H.; Kose, E. Tetrahedron: Asymmetry 2004, 15, 777–781; (c)
Arthurs, C. L.; Wind, N. S.; Whitehead, R. C.; Stratford, I. J. Bioorg. Med. Chem.
Lett. 2007, 17, 553–557; (d) Barfoot, C. W.; Burns, A. R.; Edwards, M. G.;
Kenworthy, M. N.; Ahmed, M.; Shanahan, S. E.; Taylor, R. J. K. Org. Lett. 2008, 10,
353–356; (e) Arthurs, C. L.; Lingley, K. F.; Piacenti, M.; Stratford, I. J.; Tatic, T.;
Whitehead, R. C.; Wind, N. S. Tetrahedron Lett. 2008, 49, 2410–2413.
5. Schultz, A. G.; Macielag, M.; Sundararaman, P.; Taveras, A. G.; Welch, M. J. Am.
Chem. Soc. 1988, 110, 7828–7841.
6. (a) Schultz, A. G.; Dai, M.; Khim, S.-K.; Pettus, L.; Thakkar, K. Tetrahedron Lett
1998, 39, 4203–4206; (b) Khim, S.-K.; Dai, M.; Zhang, X.; Chen, L.; Pettus, L.;
Thakkar, K.; Schultz, A. G. J. Org. Chem. 2004, 69, 7728–7733; (c) Dai, M.; Zhang,
X.; Khim, S.-K.; Schultz, A. G. J. Org. Chem. 2005, 70, 384–387.
Scheme 4. Proposed mechanism for Sc(OTf)3-catalyzed fragmentation of 9 to 6.
a conformer 150 in a concerted pathway to form iodo ketone 16,
and successive elimination of HI takes place to give 6.
In summary, we established an efficient method for the prepa-
ration of (4S)-2-allyl-4-hydroxycyclohex-2-en-1-one ((S)-13) by
Sc(OTf)3-catalyzed fragmentation of iodolactone 12 in DMF-H2O
at 100 °C. Asymmetric synthesis of platensimycin (1) can be per-
formed by employing thus-obtained (S)-13. The Sc(OTf)3-catalyzed
fragmentation is also useful for the preparation of other optically
pure 2-alkyl-4-hydroxycyclohex-2-en-1-ones 6 from iodolactones
9, which are readily prepared from chiral amide 8.
7. House, H. O. In Modern Synthetic Reactions; Benjamin: California, 1972. Chapter
9.
8. (2S,3S,4S)-2-Allyl-3-iodo-1-oxocyclohexan-2,4-carbolactone (12): mp 113.0–
114.0 °C (cyclohexane); ½ ꢁ
a 2D6 +186.2 (c 0.744, CHCl3); 1H NMR (500 MHz,
CDCl3) d 2.39–2.52 (m, 2H), 2.59–2.82 (m, 4H), 4.71 (dd, J = 5.4, 1.7 Hz, 1H),
4.98–5.02 (m, 1H), 5.22 (like d, J = 10.0 Hz, 1H), 5.26 (dtd, J = 17.1, 9.8, 5.1 Hz,
1H); 13C NMR (126 MHz, CDCl3) d 23.7, 27.5, 29.1, 33.0, 62.9, 77.6, 121.3, 130.6,
169.1, 197.6; IR (CHCl3, cmꢀ1) 1786, 1730; Anal. Calcd for C10H11IO3: C, 39.24;
H, 3.62. Found: C, 39.20; H, 3.64.
Acknowledgments
9. Both the combination of DMF–H2O and its ratio (1:3) were important for the
fragmentation. The combinations such as THF–H2O and t-BuOH–H2O were not
effective.
10. (a) Hatano, M.; Takagi, E.; Arinobe, M.; Ishihara, K. J. Organomet. Chem. 2007,
692, 569–578; (b) Kobayashi, S. Synlett 1994, 689–701; (c) Kobayashi, S.;
Manabe, K. Acc. Chem. Res. 2002, 35, 209–217.
This study was financially supported by the Uehara Memorial
Foundation and a Grant-in-Aid for Scientific Research from the
Ministry of Education, Culture, Sports, Science, and Technology of
Japan.
11. Experimental procedure: The solution of 12 (99.5 mg, 0.33 mmol) and Sc(OTf)3
(167.1 mg, 0.34 mmol) in DMF (1.5 mL) and H2O (4.5 mL) was stirred at 100 °C
for 17 h. After cooling to room temperature, H2O was added, and the mixture
was extracted with ethyl acetate. The combined organic extracts were dried
over anhydrous Na2SO4, filtered, and concentrated. The crude product purified
by column chromatography on silica gel (hexane-ethyl acetate, from 3:1 to
References and notes
1. Matsuo, J.; Takeuchi, K.; Ishibashi, H. Org. Lett. 2008, 10, 4049–4052.
2. (a) Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter,
R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.;
Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C. W.; Hernandez, L.; Allocco, J.;
Basilio, A.; Tormo, J. R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S.
H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.;
Barrett, J.; Schmatz, D.; Becker, J. W.; Cully, D.; Singh, S. B. Nature 2006, 441,
358–361; (b) Singh, S. B.; Jayasuriya, H.; Ondeyka, J. G.; Herath, K. B.; Zhang, C.
W.; Zink, D. L.; Tsou, N. N.; Ball, R. G.; Basilio, A.; Genilloud, O.; Diez, M. T.;
Vicente, F.; Pelaez, F.; Young, K.; Wang, J. J. Am. Chem. Soc. 2006, 128, 11916–
11920.
1:1) gave (S)-13 (38.2 mg, 0.25 mmol, 77%) as
a colorless oil and (R)-14
(6.2 mg, 32 lmol, 10%). (4S)-2-allyl-4-hydroxy-cyclohex-2-en-1-one ((S)-13):
½
a 2D4
ꢁ
ꢀ41.4 (c 0.400, CHCl3); 1H NMR (500 MHz, CDCl3) d 1.90–2.01 (m, 1H),
2.29–2.45 (m, 3H), 2.62 (dt, J = 16.5, 6.1 Hz, 1H), 2.95 (like d, J = 6.7 Hz, 2H),
4.54–4.61 (br, 1H), 5.04–5.11 (m, 2H), 5.79 (ddt, J = 17.1, 10.4, 6.7 Hz, 1H),
6.67–6.70 (m, 1H); 13C NMR (126 MHz, CDCl3) d 32.6, 33.0, 35.5, 66.6, 117.0,
134.8, 137.9, 148.0, 198.2; IR (CHCl3, cmꢀ1) 1674, 1644; HRMS (EI) calcd for
C9H12O2: 152.08373; found 152.08380.