C O M M U N I C A T I O N S
Table 1. Electronic Effects on the Regioselectivity of
that in mode a; therefore, the operation of mode a and mode b
simultaneously will decrease ee.
Hydrometalationa
Further experiments are carried out to to gain insights into the sense
of chiral induction in the mode b pathway. According to our previous
studies, electron-donating groups attached to the aryl rings of substrates
further enhance mode b hydrometalation as a result of the polarity of
the double bonds.8 If mode b hydrometalation can be further promoted
to operate as a predominant pathway by using these types of substrates,
the sense of chiral induction of mode b can then be revealed. As
anticipated, the hydrogenation of 5 and 6 using electron-deficient
catalyst 2c afforded enantioselectivity in favor of (R)-configuration,
suggesting a reversal of the sense of chiral induction. The relatively
low ee is most likely due to the simultaneous operation of the mode
a pathway giving the opposite chiral induction. While we cannot rule
out the possibility that the weakened coordination of catalyst 2c could
lead to background reaction7 and result in the decrease of ee, the
reversed sense of chiral induction is more consistent with our
mechanistic model. At this stage, these analyses are not conclusive
partially due to the lack of experimental tools to determine regiose-
lectivity and enantioselectivity using the same set of olefin substrates
and chiral ligands.
In summary, we have shown that the electronic density of Wilkin-
son-type catalysts strongly influences the regioselectivity of the
hydrometalation step. Tuning electronic properties of BINAP type
chiral ligands in asymmetric hydrogenation result in a drastic decrease
or even reversal in chiral induction. These two observations, being
consistent with each other, point to a new direction to seek the origin
of electronic effects in asymmetric hydrogenation.
a Reaction conditions: (Ar3P)3RhCl (0.025 mmol), cis-ꢀ-methoxystyrene
(0.5 mol), 1 atm of D2, in benzene at 24 °C, 0.5-5 h.
Table 2. Reversing the Enantioselectivity via Electronic Tuning
Acknowledgment. We thank GlaxoSmithKline and Cambridge
Overseas Trust (to H.-C.W.) and Cambridge Commonwealth Trust
and Universiti Sains Malaysia for studentships (to S.A.H.). This
manuscript is written in memory of our mentor J. B. Spencer who
passed away on April 6, 2008.
Supporting Information Available: Experimental procedure and
characterization of all new compounds. This material is available free of
References
(1) (a) Knowles, W. S. Acc. Chem. Res. 1983, 16, 106. (b) Noyori, R. Science
1990, 248, 1194. (c) Guillaneux, D.; Zhao, S. H.; Samuel, O.; Rainford,
D.; Kagan, H. B. J. Am. Chem. Soc. 1994, 116, 9430. (d) Burk, M. J. Acc.
Chem. Res. 2000, 33, 363. (e) Tang, W. J.; Zhang, X. M. Chem. ReV. 2003,
103, 3029.
(2) (a) Brocene, R. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 12569.
(b) Ohta, T.; Ikegami, H.; Miyake, T.; Takaya, H. J. Organomet. Chem.
1995, 502, 169. (c) Bell, S.; Wu¨stenberg, B.; Kaiser, S.; Menges, F.;
Netscher, T.; Pfaltz, A. Science 2006, 311, 642.
(3) (a) Halpern, J. Science 1982, 217, 401. (b) Brown, J. M. Chem. Soc. ReV.
1993, 22, 25. (c) Blackmond, D. G. J. Am. Chem. Soc. 1998, 120, 13349.
(d) Landis, C. R.; Hilfenhaus, P.; Feldgus, S. J. Am. Chem. Soc. 1999,
121, 8741. (e) Evans, D. A.; Michael, F. E.; Tedrow, J. S.; Campos, K. R.
J. Am. Chem. Soc. 2003, 125, 3534.
(4) (a) Chan, A. S. C.; Halpern, J. J. Am. Chem. Soc. 1980, 102, 838. (b)
Brown, J. M.; Chaloner, P. A. J. Chem. Soc., Chem. Commun. 1980, 344.
(5) (a) Harthun, A.; Giernoth, R.; Elsevier, C. J.; Bargon, J. Chem. Commun.
1996, 2483. (b) Gridnev, I. D.; Higashi, N.; Asakura, K.; Imamoto, T. J. Am.
Chem. Soc. 2000, 122, 7183.
(6) RajanBabu, T. V.; Ayers, T. A.; Casalnuovo, A. L. J. Am. Chem. Soc.
1994, 116, 4101.
a Catalysts: Rh(BINAPs)(COD)ClO4 (BINAPs ) 2,2′-bis(diarylphos-
phino)-1,1′-binaphthyl). b General reaction conditions: dehydrocinnamic
acid (0.2 mmol), catalyst (0.01 mmol), 1 atm of H2, in THF at 24 °C.
When (R)-2a was used, reactions were carried out at 60 °C to enhance
the reactivity.
(7) For related studies see:(a) Alame, M.; Pestre, N.; de Bellefon, C. AdV. Synth.
Catal. 2008, 350, 898. (b) Kurosawa, H.; Ikeda, I. J. Organomet. Chem.
1992, 428, 289.
(8) Yu, J. Q.; Spencer, J. B. J. Am. Chem. Soc. 1997, 119, 5257.
(9) (a) Brown, J. M.; Parker, D. Organometallics 1982, 1, 950. (b) Black, A.;
Brown, J. M.; Pichon, C. Chem. Commun. 2005, 5284. (c) Imamoto, T.;
Itoh, T.; Yoshida, K.; Gridnev, I. D. Chem. Asian J. 2008, 3, 1636.
(10) (a) Young, J. F.; Osborn, J. A.; Jardine, F. H.; Wilkinson, G. J. Chem.
Soc., Chem. Commun. 1965, 131. (b) Schrock, R. R.; Osborn, J. A. J. Am.
Chem. Soc. 1971, 93, 2397.
shift of the hydrometalation regioselectivity from predominantly mode
a to a mixture of mode a and mode b is expected. This shift could
result in erosion of enantioselectivity due to two possible causes: (1)
the chiral induction in mode b is less effective based on a steric
argument; (2) the sense of chiral induction in mode b is opposite to
(11) Wu, H. C.; Yu, J. Q.; Spencer, J. B. Org. Lett. 2004, 6, 4675.
JA903089F
9
J. AM. CHEM. SOC. VOL. 131, NO. 28, 2009 9605