J. Fleischhauer, R. Beckert et al.
452–483; e) J. I. Wu, C. S. Wannere, Y. Mo, P. von R. Schleyer,
Boero, G. J. Richards, J. P. Hill, T. Ohno, T. Mori, K. Ariga, J. Chem.
Theory Comput. 2010, 6, 517–525; g) R. Scipioni, J. P. Hill, F. J. Ri-
Conclusion
We introduced tetrachloropyrazine as a building block for
the synthesis of oligoazaacenes and obtained two novel fluo-
rubine derivatives. These regioisomeric derivatives were
characterised by NMR spectroscopy, MS, X-ray structural
analysis and UV/VIS measurements as well as DFT meth-
ods. Strong packing effects were observed in the solid struc-
ture due to marked p–p-interactions, which were proven by
X-ray structural analysis and ab-initio calculations of model
compounds 3a and 4a. We discussed their exceptional opti-
cal properties, such as their high fluorescence quantum
yields, which are comparable to those of rhodamine 6G, as
well as their strong solvatochromic and acidochromic behav-
iour. We have demonstrated the tuning of the electronic
properties of azaacenes by selective introduction of substi-
tuted pyrazines. These chromophores are promising candi-
dates for functional materials, and particularly for electro-
optical devices, because of their pronounced p-interactions
and redox activity. In forthcoming publications we will
detail improved synthetic procedures that allow us to intro-
duce functionalities in a selective manner, and we will
report on their ability to act as n-type conducting materials
for OFET devices.
[4] a) Q. Miao, T.-Q. Nguyen, T. Someya, G. B. Blanchet, C. Nuckolls, J.
[5] a) O. Hinsberg, E. Schwantes, Chem. Ber. 1903, 36, 4039–4050;
b) J. L. Switzer, US Patent 2.495.202, 1945; c) F. Graser, DE3504143,
˘
1986; d) C. E. Foster, GB2.430.936, 2007; e) C. Radulescu, Rev.
˘
Chim. 2005, 56, 151–154; f) C. Radulescu, A.-M. Hossu, Rev. Chim.
2005, 56, 742–745; g) J. Fleischhauer, R. Beckert, DE102007050673,
2007; h) G. J. Richards, J. P. Hill, N. K. Subbaiyan, F. D’Souza, P. A.
Karr, M. R. J. Elsegood, S. J. Teat, T. Mori, K. Ariga, J. Org. Chem.
2009, 74, 8914–8923; i) G. J. Richards, J. P. Hill, K. Okamoto, A.
Shundo, M. Akada, M. R. J. Elsegood, T. Mori, K. Ariga, Langmuir
Hornig, W. Gꢅnther, E. Birckner, U.-W. Grummt, H. Gçrls, Chem.
Bull. Chem. Soc Jpn. 1956, 29, 460–464; m) Y. Akimoto, Bull.
Chem. Soc Jpn. 1956, 29, 553–559.
[6] a) F. Stçckner, C. Kꢃpplinger, R. Beckert, H. Gçrls, Synlett 2005,
643–645; b) F. Stçckner, R. Beckert, D. Gleich, E. Birckner, W.
[7] a) I. L. Yudin, A. B. Sheremetev, O. P. Shitov, V. A. Tartakovskii,
[8] O. Tverskoy, F. Rominger, A. Peters, H.-J. Himmel, U. W. F. Bunz,
[9] Such problems are common when working with p-expanded chro-
mophores that tend to form tightly packed aggregates. In this initial
study we did not introduce solubilising or bulky groups to prevent p
stacking but work to this end is in progress to achieve highly func-
tionalised and well-soluble oligoazaacene derivatives.
Acknowledgements
We would like to thank E. Kielmann for measuring photophysical data,
DFG for founding of postdoctoral fellowship (FL720/1-1), and H. A. Col-
lins and J. K. Sprafke for language polishing.
[1] a) S. Sun, L. R. Dalton in Introduction to Organic Electronic and
Optoelectronic Materials and Devices, CRC, London, 2008; b) A.
Pron, P. Gawrys, M. Zagorska, D. Djurado, R. Demadrille, Chem.
Chem. Rev. 2009, 109, 5868–5923; d) J. P. Celli, B. Q. Spring, I.
Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan,
Chem. Rev. 2010, 110, 2795–2838; e) A. Hagfeldt, G. Boschloo, L.
Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595–6663; f) K.
Szaciłowski, W. Macyk, A. Drzewiecka-Matuszek, M. Brindell, G.
Stochel, Chem. Rev. 2005, 105, 2647–2694; g) A. Mishra, C.-Q. Ma,
P. Bꢃuerle, Chem. Rev. 2009, 109, 1141–1276; h) A. R. Murphy,
Liang, M. A. Woodhouse, B. A. Gregg, Chem. Rev. 2010, 110, 6689–
6735; j) A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B.
Behera, Chem. Rev. 2000, 100, 1973–2011; k) Y. Shirota, H. Kageya-
c) J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, X. Zhan,
[10] CCDC 819883 (3a), 831397 (4a), 819884 (4HHa) and 819885 (9)
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
cif.
[11] a) F. Wudl, P. A. Koutentis, A. Weitz, B. Ma, T. Strassner, K. N.
Koutentis, ARKIVOC 2002, VI, 175–191; c) A. E. Riley, G. W.
Mitchell, P. A. Koutentis, M. Bendikov, P. Kaszynki, F. Wudl, S. H.
[12] C. Reichardt in Solvents and Solvent Effects in Organic Chemistry
Wiley-VCH, Weinheim, 2004, p. 329 .
[14] S. Daehne, Chimia 1991, 45, 288–296.
[15] Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgom-
ery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.
Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O.
Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Fores-
man, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski,
B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Na-
Schleyer, J. I. Wu, S. Barlow, S. R. Marder, K. I. Hardcastle, U. H. F.
Angew. Chem. 2008, 120, 460–492; Angew. Chem. Int. Ed. 2008, 47,
4556
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2012, 18, 4549 – 4557