Ethylene Oligomerizations by Nickel Complexes
1615
¨
¨
2. Keim W, Behr A, Limbacker B, Kruger C (1983) Angew Chem
[Ni] ratio. The decrease of activity in the presence of excess
amount of cocatalyst is usually observed in transition metal
catalyzed olefin oligomerizations. In transition metal catalyzed
oligomerization process, the active species are established as
cation–anion ion pair, formed through the activation of catalyst
precursors by the aluminum cocatalyst and reaction attributes
connected with the nature of the ion pairing. At higher con-
centration of cocatalyst, the ion pair could be stabilized by the
excess cocatalyst making monomer insertion difficult and
hence a reduced the activity [41]. On increasing the [Al[/[Ni]
from 50 to 800 favored formation of C4 fraction due to exten-
sive chain transfer to Al.
Int Ed Engl 22:503
3. Brookhart M, Johnson LK, Killian CM (1995) J Am Chem Soc
117:6414
4. Johnson LK, Mecking S, Brookhart M (1996) J Am Chem Soc
118:267
5. Killian CM, Temple DJ, Johnson LK, Brookhart M (1996) J Am
Chem Soc 118:11664
6. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169
7. Mecking S (2001) Angew Chem Int Ed 40:534
8. Gibson VC, Spitzmesser SK (2003) Chem Rev 103:283
9. Speiser F, Braustein P, Saussine L (2005) Acc Chem Res 38:784
10. Zhang W, Zhang J, Sun WH (2005) Prog Chem 17:310
11. Bianchini C, Giambastiani G, Luconi L, Meli A (2010) Coord
Chem Rev 254:431
12. Gibson VC, and Tomov AK To BP Chemical Ltd WO
2004/083263
13. Zhang W, Sun WH, Zhang S, Hou J, Wedeking K, Schultz S,
To explore temperature effect oligomerizations were
performed at temperatures ranging from 10 to 70 °C using
3a/EASC system at [Al[/[Ni] = 200 (Table 3). The opti-
mum activity was observed at 30 °C. There is a drastic
reduction in activity on increasing temperature from 30 to
70 °C, demonstrating the deactivation of active species is
accelerated at elevated temperatures. In addition facilitated
chain transfer reactions at high temperatures increase the
production of C4 olefin: 92.5% at 70 °C.
¨
Frohlich R, Song H (2006) Organometallics 25:1961
14. Appukuttan V, Zhang L, Ha C-S, Kim I (2009) Polymer 50:1150
15. Cariou R, Chirinos J, Gibson VC, Jacobsen G, Tomov AK,
Elsegood MRJ (2009) Macromolecules 42:1443
16. Tenza K, Hanton MJ, Slawin AMZ (2009) Organometallics 28:
4852 and the references therein
17. Adams H, Bailey NA, Crane JD, Fenton DE, Latour JM, Wil-
liams JM (1990) J Chem Soc Dalton Trans 1727
18. Xu X, Xi Z, Wanzhi C, Daqi W (2007) J Coord Chem 60:2297
19. Chandran D, Kwak CH, Oh JM, Ahn IY, Ha C-S, Kim I (2008)
Catal Lett 125:27
4 Conclusions
20. Delley B (2000) J Chem Phys 113:7756
21. Perdew JP, Wang Y (1992) Phys Rev B 45:13244
22. Delley B, Seminario JM, Politzer P (1995) Modern density
functional theory: a tool for chemistry. Elsevier, Amsterdam
23. Andzelm J, King-Smith RD, Fitzgerald G (2001) Chem Phys Lett
335:321
24. Breslow R, Hunt JT, Smiley R, Tarnowski T (1983) J Am Chem
Soc 105:5337
25. Wu FJ, Kurtz DM, Hagen KS, Nyman PD, Debrunner PG,
Vankai VA (1990) Inorg Chem 29:5174
26. Kimblin C, Allen WE, Parkin G (1995) J Chem Soc Chem
Commun 1813
27. Sorrell TN, Allen WE, White PS (1995) Inorg Chem 34:952
28. Chatlas J, Kaizaki S, Kita E, Kita P, Sakagami N, van Eldik R
(1999) J Chem Soc Dalton Trans 91
29. Winter JA, Caruso D, Shepherd RE (1988) Inorg Chem 27:1086
30. Bocarsly JR, Chiang MY, Bryant L, Barton JK (1990) Inorg
Chem 29:4898
Two classes of Ni(II) complex bearing bis(benzimidazol-
yl)amine and bis(2,6-benzimidazolyl)pyridine ligands with
varying N-alkyl substitutents were synthesized and character-
ized. From the optimized structures of the complexes using a
GGA/PBE/DNP level of theory with the DMol3 DFT code, the
Ni centers in bis(benzimidazolyl)amine and bis(2,6-benzimi-
dazolyl)pyridine ligands lie in a distorted tetragonal–pyramidal
and a distorted trigonal–bipyramidal environment, respec-
tively. All the Ni(II) complexes combined with EASC cocata-
lyst showed high activity towards ethylene to yield butenes
(around 85%) as major product along with hexenes. The Ni(II)
complexes bearing planar bis(2,6-benzimidazolyl)pyridine
ligands showed higher activity, dimerization and 1-butene
selectivity than those bearing bis(benzimidazolyl)amine
ligands. The modifications of ligand by N-alkylation had a
strong influence on oligomerization profiles. Higher oligo-
merization temperatures and cocatalyst ratio favored the pro-
duction C4 fraction and enhanced selectivity towards 1-butene.
´
31. Ceniceros-Gomeza AE, Barba-Behrensa N, Quiroz-Castro ME,
`
¨
Bernes S, Noth H, Castillo-Blum SE (2000) Polyhedron 19:1821
32. Wang L, Sun WH, Han L, Yang H, Hu Y, Jin X (2002) J Or-
ganomet Chem 658:62
33. Ma Z, Sun WH, Li ZL, Shao CX, Hu YL (2002) Chin J Polym Sci
20:205
34. Hao P, Zhang S, Sun WH, Shi Q, Adewuyi S, Lu X, Li P (2007)
Organometallics 26:2439
Acknowledgments This study was supported by grants-in-aid for
the World Class University Program (No. R32-2008-000-10174-0)
and the National Core Research Center Program from MEST (No.
R15-2006- 022-01001-0).
35. Sun WH, Hao P, Zhang S, Shi Q, Zuo W, Tang X (2007)
Organometallics 26:2720
36. Xiao L, Gao R, Zhang M, Li Y, Cao X, Sun WH (2009) Orga-
nometallics 28:2225
37. Tomov AK, Chirinos JJ, Jones DJ, Long RJ, Gibson VC (2005) J
Am Chem Soc 127:10166
38. Parr RG, Yang W (1984) J Am Chem Soc 106:4049
39. Thanikaivelan P, Padmanabhan J, Subramanium V, Ramasami T
(2002) Theor Chem Acc 107:326
40. Svejda SA, Brookhart M (1999) Organometallics 18:65
41. Chen EYX, Marks TJ (2000) Chem Rev 100:1391
References
1. Keim W, Kowaldt FH, Goddard R, Kru¨ger C (1978) Angew
Chem Int Ed Engl 17:466
123