Communications
5-formyl-2-thiopheneboronic acid (193 mg, 1.23 mmol), [Pd-
Nazeeruddin, A. Kay, I. Rodicio, R. Humphry Baker, E. Muller,
M. Yanagida, K. Sayama, H. Arakawa, G. Fujihashi, T. Horiguchi,
Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M.
van de Lagemaat, Coord. Chem. Rev. 2004, 248, 1165; g) Y. Chiba,
A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Y. Han, Jpn. J.
Grꢂtzel, Struct. Bonding (Berlin) 2007, 123, 113.
[2] a) K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S.
A. Furube, R. Katoh, H. Sugihara, Y. Dan-oh, C. Kasada, A.
Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, L.
Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-
Baker, L. C. Sun, A. Hagfeldt, M. Grꢂtzel, M. K. Nazeeruddin, J.
chote, D. Shi, J. Guo, S. M. Zakeeruddin, M. Grꢂtzel, P. Wang, J.
Phys. Chem. C. 2008, 112, 19770; g) H. Qin, S. Wenger, M. Xu, F.
Gao, X. Jing, P. Wang, S. M. Zakeeruddin, M. Grꢂtzel, J. Am.
Chem. Soc. 2008, 130, 920; h) M. Wang, M. Xu, D. Shi, R. Li, F.
Gao, H. Zhang, Z. Yi, R. Humphry-Baker, P. Wang, S. M.
Choi, S. Kim, C. Baik, K. Song, M.-S. Kang, S. O. Kang, J. Ko, J.
k) H. Choi, C. Baik, S. O. Kang, J. Ko, M.-S. Kang, Md. K.
M. K. Nazeeruddin, E. Martꢃnez-Ferrero, E. Palomares, J. Ko, M.
Geiger, F. Nꢄesch, S. Kim, J. Ko, M. Grꢂtzel, M. K. Nazeeruddin,
Ko, J.-H. Yum, S. Fantacci, F. De Angelis, D. Di Censo, Md. K.
(dppf)Cl2] (50 mg, 0.06 mmol), and K2CO3 (427 mg, 3.09 mmol)
were dissolved in a mixture of toluene (3 mL) and methanol
(2 mL). The mixture was heated by microwave irradiation at 758C
for 15 min. The reaction was quenched by the addition of water
(30 mL) and extracted with CH2Cl2 (3 ꢀ 30 mL). The combined
organic extracts were dried over anhydrous MgSO4 and filtered.
Solvent removal by rotary evaporation followed by column chroma-
tography over silica gel using petroleum ether/CH2Cl2 4:1 gave 4 as an
1
orange solid (178 mg, 45%). H NMR (500 MHz, [D6]acetone): d =
9.90 (s, 1H), 7.90 (d, J = 4.0 Hz, 1H), 7.50 (d, J = 8.7 Hz, 2H), 7.47 (d,
J = 3.9 Hz, 1H), 7.42 (d, J = 3.90 Hz, 1H), 7.32 (d, J = 3.9 Hz, 1H),
7.08 (d, J = 8.9 Hz, 4H), 6.85 (d, J = 8.9 Hz, 4H), 6.75 (d, J = 8.7 Hz,
2H), 3.99 (t, J = 6.5 Hz, 4H), 1.77 (m, 4H), 1.48 (m, 4H), 1.36 (m,
8H), 0.91 ppm (t, J = 6.9 Hz, 6H); 13C NMR (125 MHz, [D6]acetone):
d = 184.4, 158.1, 151.2, 148.3, 148.2, 143.5, 141.8, 140.1, 135.1, 129.5,
129.1, 128.3, 126.6, 125.9, 124.9, 121.1, 117.3, 69.8, 33.3, 31.1, 27.5, 24.3,
15.3 ppm; HRMS (TOF-MS-ESI) m/z: 637.2688 [M+]; calcd for
C39H43NO3S2 [M+]: 637.2679.
3-(5-(5-(4-(bis(4-(hexyloxy)phenyl)thiophene-2-yl)thiophene-2-
yl)-2-cyanoacrylic acid (D21L6). Compound 4 (178 mg, 0.28 mmol),
cyanoacetic acid (35 mg, 0.42 mmol), and piperidine (5 mg,
6.06 mmol) were dissolved in acetonitrile (10 mL) and heated under
reflux for 3 h. The solvent was removed by rotary evaporation.
Purification by extraction (petroleum ether and aqueous HCl (1%)
gave the final compound D21L6 (137 mg, 70%) as a dark red solid.
m.p. 144.7–145.28C. 1H NMR (500 MHz, [D6]DMSO): d = 8.25 (s,
1H), 7.78 (d, J = 4.0 Hz, 1H), 7.49 (m, 3H), 7.46 (d, J = 3.9 Hz, 1H),
7.36 (d, J = 3.8 Hz, 1H), 7.02 (d, J = 8.8 Hz, 4H), 6.90 (d, J = 8.8 Hz,
4H), 6.73 (d, J = 8.6 Hz, 2H), 3.92 (t, J = 6.4 Hz, 4H), 1.68 (m, 4H),
1.41 (m, 4H), 1.29 (m, 8H), 0.86 ppm (t, J = 6.9 Hz, 6H); 13C NMR
(125 MHz, [D6]DMSO): d = 163.4, 155.5, 148.5, 145.2, 143.6, 139.3,
138.9, 134.4, 132.7, 128.8, 128.1, 127.5, 127.0, 126.3, 125.2, 124.1, 123.3,
118.6, 117.9, 115.5, 67.6, 30.9, 28.6, 25.1, 22.0, 13.8 ppm; HRMS (TOF-
MS-ESI) m/z: 704.2707 [M+]; calcd. for C42H44N2O4S2 [M+]: 704.2737.
Solar-cell fabrication and characterization: The photoanodes
composed of nanocrystalline TiO2 were prepared according to a
previously reported procedure.[8] The TiO2 electrodes were immersed
in a solution of D21L6 (0.3 mm in ethanol) and kept at room
temperature for 15 h. An electrolyte solution (N-methyl-N-butyl
imidiazolium iodide (0.6m), iodine (0.04m), LiI (0.025m), GuNCS
(0.05m), and tert-butylpyridine (0.28m) in a mixture of valeronitrile
and acetonitrile (15:85 v/v) was used for the redox couple. For
stability tests, the binary ionic-liquid electrolyte consisted of iodine
(0.2m), N-butyl benzimidazole (NBB, 0.5m), and GuNCS (0.1m) in a
mixture of 1-propyl-3-methylimidazolium iodide (PMII) and 1-ethyl-
3-methyl-imidazolium tetracyanoborate (EMIB(CN)4 , Merck; 65:35
v/v).[9a] NBB was synthesized according to a published procedure.[9b]
The J/V characteristics and IPCE of the DSCs were measured by
using previously reported techniques.[8] The measurement delay time
of photo J/V characteristics of DSCs was fixed to 40 ms for volatile
electrolyte and 200 ms for ionic-liquid electrolyte, respectively. The
detailed procedure for solid-state solar cell fabrication was described
previously.[6] A nanoporous layer (ca. 1.7 mm) of TiO2 (20 nm) was
prepared for photoanode and the hole-transporting materials used
was Spiro-MeOTAD, which was dissolved in chlorobenzene. tert-
Butylpyridine and Li(CF3SO2)2N were added as additives. The device
fabrication was completed by evaporating a 50 nm gold electrode
over the top of the cell.
[5] M. Melucci, G. Barbarella, M. Zambianchi, P. Di Pietro, A.
[6] a) L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi,
b) H. J. Snaith, L. Schmidt-Mende, M. Grꢂtzel, M. Chiesa, Phys.
[7] a) L. Schmidt-Mende, S. M. Zakeeruddin, M. Grꢂtzel, Appl. Phys.
c) D. Kuang, C. Klein, H. J. Snaith, R. Humphry-Baker, S. M.
[8] M. K. Nazeeruddin, P. Pꢅchy, T. Renouard, S. M. Zakeeruddin, R.
Humphry-Baker, P. Comte, P. Liska, C. Le, E. Costa, V. Shklover,
L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grꢂtzel, J. Am.
Chem. Soc. 2001, 123, 1613.
Received: September 26, 2008
Revised: November 13, 2008
Published online: December 29, 2008
[9] a) D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, M. Grꢂtzel, J.
Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Grꢂtzel,
Keywords: dyes/pigments · electrochemistry ·
.
long-term stability · sensitizers · solar cells
1580
ꢀ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2009, 48, 1576 –1580