and internal alkynes.5 Subsequently, ruthenium,6 rhodium,7
iridium,8 titanium,9 and uranium10 complexes were found to
catalyze similar reactions. In most of these processes, however,
the internal alkynes were limited to the activated ones bearing
an electron-withdrawing group such as a carbonyl or sulfonyl
moiety. Recently, some successful examples of the catalytic
cross-addition of terminal silylacetylenes to unactivated terminal
and internal alkynes or weakly activated ones such as propargyl
ethers have been described.11 Our groups also focused on the
catalytic activities of nickel12 and rhodium complexes and
succeeded in the same type of transformation.13 In the course
of our study of this chemistry, we anticipated that our catalyst
systems could be applied to the addition of terminal silylacety-
lenes to propargyl amines. The reaction is, to the best of our
knowledge, unprecedented, while the expected products, 2- or
3-alkynylallylamines, are not only synthetically useful inter-
mediates but also of pharmaceutical interest, especially the
arylated derivatives for treating neurological disorders including
Alzheimer’s disease.14 Herein, we report the nickel- and
rhodium-catalyzed regio- and stereoselective addition of terminal
silylacetylenes to γ-arylated propargyl amines, the regioselec-
tivity being highly catalyst-dependent.
Treatment of tert-butyldimethylsilylacetylene (1a) with di-
methyl(3-phenyl-2-propynyl)amine (2a) in the presence of
Ni(cod)2 (5 mol %) and an excess (to Ni) of 2,6-lutidine in
toluene, which was an effective catalyst system in our previous
work,13a gave the desired adduct 3aa and its regioisomer 4aa
in a ratio of 94:6 with a good combined yield (Table 1, entry
1). The stereochemistry of each product was unambiguously
determined by NOE analysis (see the Supporting Information).
Notably, the corresponding stereoisomers were not detected. In
Nickel- and Rhodium-Catalyzed Addition of
Terminal Silylacetylenes to Propargyl Amines:
Catalyst-Dependent Complementary
Regioselectivity
Naoto Matsuyama, Koji Hirano, Tetsuya Satoh, and
Masahiro Miura*
Department of Applied Chemistry, Faculty of Engineering,
Osaka UniVersity, Suita, Osaka 565-0871, Japan
ReceiVed March 3, 2009
The cross-addition of terminal silylacetylenes to γ-arylated
propargyl amines occurs efficiently via C-H cleavage by
using either a nickel or rhodium catalyst. Taking advantage
of the catalyst-controlled switching of regioselectivity in the
reaction, both the 2- and 3-alkynylallylamines are readily
accessible from the same starting materials.
The transition metal-catalyzed addition of terminal alkyne
C-H bonds to carbon-carbon triple bonds ranks as the most
simple and straightforward access to π-conjugated enynes, which
are versatile building blocks in organic synthesis.1 In particular,
the catalytic homodimerization of terminal alkynes directed
toward the selective synthesis of one of the three possible
(E)-,2 (Z)-,3 and gem-4enyne isomers have been extensively
studied. On the other hand, the selective cross-dimerization
between terminal alkynes and internal ones is much more
challenging since the terminal alkynes are prone to undergo the
rapid homodimerization and oligomerization in the presence of
transition metal catalysts. In 1987, Trost reported the highly
selective palladium-catalyzed cross-dimerization with terminal
(6) Yi, C. S.; Liu, N. Organometallics 1998, 17, 3158.
(7) (a) Weng, W.; Guo, C.; Celenligil-cetin, R.; Foxman, B. M.; Ozerov,
O. V. Chem. Commun. 2006, 197. (b) Ito, J.; Kitase, M.; Nishiyama, H.
Organometallics 2007, 26, 6412.
(8) Hirabayashi, T.; Sakaguchi, S.; Ishii, Y. AdV. Synth. Catal. 2005, 347,
872.
(9) Akita, M.; Yasuda, H.; Nakamura, A. Bull. Chem. Soc. Jpn. 1984, 57,
480.
(10) Wang, J.; Kapon, M.; Berthet, J. C.; Ephritikhine, M.; Eisen, M. S.
Inorg. Chem. Chim. Acta 2002, 334, 183.
(11) Ruthenium: (a) Katayama, H.; Yari, H.; Tanaka, M.; Ozawa, F. Chem.
Commun. 2005, 4336. Palladium: (b) Tsukada, N.; Ninomiya, S.; Aoyama, Y.;
Inoue, Y. Org. Lett. 2007, 9, 2919. Iridium: (c) Ogata, K.; Oka, O.; Toyota, A.;
Suzuki, N.; Fukuzawa, S. Synlett 2008, 2663. Rhodium: (d) Nishimura, T.; Guo,
X.-X.; Ohnishi, K.; Hayashi, T. AdV. Synth. Catal. 2007, 349, 2669. See also: (e)
Nishimura, T.; Guo, X.-X.; Hayashi, T. Chem. Asian J. 2008, 3, 1505. (f)
Nshimura, T.; Tsurumaki, E.; Kawamoto, T.; Guo, X.-X.; Hayashi, T. Org. Lett.
2008, 10, 4057.
(12) Pioneering work of nickel-catalyzed cross-dimerization between terminal
and internal alkynes: (a) Ishikawa, M.; Ohshita, J.; Ito, Y.; Minato, A. J. Chem.
Soc., Chem. Commun. 1988, 804. In recent years, Suginome reported nickel-
catalyzed addition of triisopropylsilylacetylene to 1,3-dienes and styrenes. (b)
Shirakura, M.; Suginome, M. J. Am. Chem. Soc. 2008, 130, 5410. (c) Shirakura,
M.; Suginome, M. Org. Lett. 2009, 11, 523. Nickel-catalyzed selective cross-
trimerization: (d) Ogata, K.; Murayama, H.; Sugasawa, J.; Suzuki, N.; Fukuzawa,
S. J. Am. Chem. Soc. 2009, 131, 3176.
(13) Nickel: (a) Matsuyama, N.; Tsurugi, H.; Satoh, T.; Miura, M. AdV. Synth.
Catal. 2008, 350, 2274. Rhodium: (b) Katagiri, T.; Tsurugi, H.; Funayama, A.;
Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 830. (c) Katagiri, T.; Tsurugi, H.;
Satoh, T.; Miura, M. Chem. Commun. 2008, 3405. See also: (d) Satoh, T.;
Tsurugi, H.; Miura, M. Chem. Rec. 2008, 8, 326.
(14) (a) Egle, I.; Frey, J.; Isaac, M. PCT Int. Appl. 2001, WO 2001032602,
A1 20010510 (CAN 134:340706). (b) Egle, I.; Frey, J.; Isaac, M. U.S. Pat. 2002,
US 6426364, B1 20020730 (CAN 137:124979). (c) Woods, S. W. PCT Int. Appl.
2006, WO 2006110724, A2 20061019 (CAN 145:432223).
(1) (a) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259. (b) Tsuji,
J. Transition Metal Reagents and Catalysts; Wiley: Chichester, UK, 2000. (c)
Bustelo, E.; Dixneuf, P. H. Handbook of C-H Transformations; Dyker, G., Ed.;
Wiley-VCH: Weinheim, Germany, 2005; Vol. 1, pp 62-72.
(2) (a) Ohshita, J.; Fukumori, K.; Matsuguchi, A.; Ishikawa, M. J. Org. Chem.
1990, 55, 3277. (b) Duchateau, R.; van Wee, C. T.; Meetsma, A.; Teuben, J. H.
J. Am. Chem. Soc. 1993, 115, 4391. (c) Chuluo, Y.; Nolan, S. P. J. Org. Chem.
2002, 67, 591. (d) Ogoshi, S.; Ueta, M.; Oka, M.; Kurosawa, H. Chem. Commun.
2004, 2732. (e) Ogata, K.; Toyota, A. J. Organomet. Chem. 2007, 692, 4139.
(3) Nishiura, M.; Hou, Z.; Wakatsuki, Y.; Yamaki, T.; Miyamoto, T. J. Am.
Chem. Soc. 2003, 125, 1184.
(4) (a) Giacomelli, G.; Marcacci, F.; Caporusso, A. M.; Lardicci, L.
Tetrahedron Lett. 1979, 20, 3217. (b) Dash, A. K.; Eisen, M. S. Org. Lett. 2000,
2, 737.
(5) (a) Trost, B. M.; Chan, C.; Ruhter, G. J. Am. Chem. Soc. 1987, 109,
3486. (b) Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Ruhter, G. J. Am.
Chem. Soc. 1997, 119, 698. (c) Trost, B. M.; McIntosh, M. C. Tetrahedron Lett.
1997, 38, 3207. See also: (d) Lucking, U.; Pfaltz, A. Synlett 2000, 1261. (e)
Chen, L.; Li, C.-J. Tetrahedron Lett. 2004, 45, 2771.
3576 J. Org. Chem. 2009, 74, 3576–3578
10.1021/jo900474d CCC: $40.75 2009 American Chemical Society
Published on Web 04/08/2009