SCHEME 1. Expected Mechanism for the Formation of 3
Fluoride Ion and Phosphines as Nucleophilic
Catalysts: Synthesis of 1,4-Benzothiazepines from
Cyclic Sulfenamides
Ce´dric Spitz,† Jean-Franc¸ois Lohier,†
Jana Sopkova-de Oliveira Santos,‡ Vincent Reboul,*,† and
Patrick Metzner†
Laboratoire de Chimie Mole´culaire et Thio-organique,
ENSICAEN, UniVersite´ de Caen Basse-Normandie, CNRS; 6,
BouleVard du Mare´chal Juin, 14050, Caen, France, and
Laboratoire de Crystallographie, Centre d’Etudes et de
Recherche sur le Me´dicament de Normandie, UniVersite´ de
Caen Basse-Normandie, 14032 Caen, France
aldehydes and aminosulfenylation6 of unsaturated aldehydes;
oxidation reactions in the presence of NCS;7 carbonylation8 or
coupling reactions with boronic acids9 using transition metal.
Also of interest is the medicinal applications of sulfenamides:
the prodrug omeprazole inhibits the acid-secreting gastric (H+/
K+)-ATPase involving a sulfenamide as a key intermediate;10
the water-soluble sulfenamide prodrug carbamazepine;11 the
formation of sulfenamide in enzymes to protect their active site
cysteines.12
ReceiVed February 27, 2009
As part of a program aimed at developing cyclic sulfenamide
reactivity,13 we sought an asymmetric synthesis of 1,4-ben-
zothiazepines,14 precursor to 1,4-benzothiazepine-1,1-dioxides,
which both exhibit a large range of biological activities.15
Our initial proposal (Scheme 1) was triggered by the
conjugate addition of the nitrogen atom of sulfenamide 1a to
the electron-deficient dimethyl acetylenedicarboxylate 2 (DMAD).
A new methodology, using fluoride ion as a nucleophilic
catalyst, was applied for the synthesis of enantiopure 1,4-
benzothiazepine from cyclic sulfenamide and electron-
deficient acetylene, with high efficiency and atom economy.
(6) Zhao, G.-L.; Rios, R.; Vesely, J.; Ericksson, L.; Co´rdova, A. Angew.
Chem., Int. Ed. 2008, 47, 8468.
(7) Matsuo, J.-i.; Iida, D.; Yamanaka, H.; Mukaiyama, T. Tetrahedron 2003,
59, 6739.
(8) (a) Kuniyasu, H.; Hiraike, H.; Morita, M.; Tanaka, A.; Sugoh, K.;
Kurosawa, H. J. Org. Chem. 1999, 64, 7305. (b) Knapton, D. J.; Meyer, T. Y.
J. Org. Chem. 2005, 70, 785. (c) Knapton, D. J.; Meyer, T. Y. Org. Lett. 2004,
6, 687. (d) Rescourio, G.; Alper, H. J. Org. Chem. 2008, 73, 1612.
(9) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4, 4309.
(10) Shin, J. M.; Cho, Y. M.; Sachs, G. J. Am. Chem. Soc. 2004, 126, 7800.
(11) Hemenway, J. N.; Nti-Addae, K.; Guarino, V. R.; Stella, V. J. Bioorg.
Med. Chem. Lett. 2007, 17, 6629.
(12) (a) Sivaramakrishnan, S.; Keerthi, K.; Gates, K. S. J. Am. Chem. Soc.
2005, 127, 10830. (b) Sarma, B. K.; Mugesh, G. J. Am. Chem. Soc. 2007, 129,
8872.
(13) Le Fur, N.; Mojovic, L.; Ple´, N.; Turck, A.; Reboul, V.; Metzner, P. J.
Org. Chem. 2006, 71, 2609.
(14) Synthesis of 1,4-benzothiazepine core: (a) Fodor, L.; Szabo, J.; Bernath,
G.; Parkanyi, L; Sohar, P. Tetrahedron Lett. 1981, 22, 5077. (b) Kraus, G. A.;
Yue, S. J. Org. Chem. 1983, 48, 2936. (c) Brewer, M. D.; Burgess, M. N.;
Dorgan, R. J. J.; Elliott, R. L.; Mamalis, P.; Manger, B. R.; Webster, R. A. B.
J. Med. Chem. 1989, 32, 2058. (d) Nefzi, A.; Ong, N. A.; Giulianotti, M. A.;
Ostreh, J. M.; Houghten, R. A. Tetrahedron Lett. 1999, 40, 4939. (e) Katritzky,
A. R.; Xu, Y.-J.; He, H.-Y.; Mehta, S. J. Org. Chem. 2001, 66, 5590. (f) Neo,
A. G.; marcos, C. F.; Marcaccini, S.; Pepino, R. Tetrahedron Lett. 2005, 46,
7977.
(15) Atherosclerosis: Brieaddy, L. E. WO Patent 016055, 1993. Hyperlipi-
daemia: (a) Brieaddy, L. E. WO Patent 005188, 1996. (b) Sasahara, T.; Mohri,
M. WO Patent 020421, 2004. (c) Starke, I.; Alenfalk, S.; Nordberg, M. P.;
Dahlstrom, M. U. J.; Bostrom, S. J. Lemurell, M. A.; Wallberg, A. C. WO Patent
076430, 2004. (d) Sasahara, T.; Mohri, M.; Kasahara, K. I. WO Patent 082874,
2005. (e) Frick, W.; Glombik, H.; Heuer, H.; Schaefer, H.-L.; Theis, S. WO
Patent 009655, 2007. Muscle relaxation accelerator: (f) Kaneko, N. WO Patent
105793, 2005. Cell death of cardiac muscles: (g) Kaneko, N.; Oosawa, T.; Sakai,
T.; Oota, H. WO Patent 012148, 1992. Diabete: (h) Nagase, T.; Sato, Y.; Eiki,
J. WO Patent 053548, 2002. Cardiac hypertrophy: IMarks, A. R.; Lehnart, S. E.
WO Patent 021439, 2008. Anti-arrythmic and heart failure: (j) Marks, A. R.;
Landry, D. W.; Deng, S.; Cheng, Z. Z. WO Patent 101496, 2006.
Among compounds containing the sulfur-nitrogen bond,
sulfenamides are not very popular compared to sulfinamides or
sulfonamides. Recently, the chemistry of sulfenamides has
received growing attention due to their ease of synthesis1 and
the particular reactivity of this functional group. Indeed, because
of the difference in electronegativity, the sulfur atom is
considered electrophilic. Moreover, because of the presence of
lone electron pairs on both atoms, the nitrogen atom is defined
as a “supernucleophile”2 according to the R-effect.3
Consequently, their potential in organic synthesis4 and their
industrial applications have been recognized. For instance, the
ability of sulfenamides to form radicals was used to accelerate
the vulcanization of rubber. Recently, new reactions involving
sulfenamides have emerged: asymmetric sulfenylation5 of
† Laboratoire de Chimie Moléculaire et Thio-organique.
‡ Centre d’Etudes et de Recherche sur le Me´dicament de Normandie.
(1) (a) Davis, F. A.; Nadir, U. K. Org. Prep. Proced. Int. 1979, 11, 35. (b)
Perrio, S.; Reboul, V.; Metzner, P. In Science of Synthesis: Compounds with
two carbon-heteroatom bonds; Ramsden, C. A., Ed.; Thieme: Stuttgart, 2007;
Vol. 31a, p 1041. (c) Taniguchi, N. Synlett 2007, 12, 1917.
(2) Welch, W. M. J. Org. Chem. 1976, 41, 2220.
(3) Buncel, E.; Um, I.-H. Tetrahedron 2004, 60, 7801.
(4) (a) Heimer, N. E.; Field, L. J. Org. Chem. 1970, 35, 3012. (b) Davis,
F. A. Int. J. Sulfur Chem. 1973, 81, 71. (c) Craine, L.; Raban, M. Chem. ReV.
1989, 89, 689.
(5) Sobhani, S.; Fielenbach, D.; Marigo, M.; Wabnitz, T. C.; Joergensen,
K. A. Chem.-Eur. J. 2005, 11, 5689.
3936 J. Org. Chem. 2009, 74, 3936–3939
10.1021/jo900449a CCC: $40.75 2009 American Chemical Society
Published on Web 04/08/2009