1864
W. Zhou et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1861–1865
Table 4
Inhibitory rates of all title compounds against acetylcholinesterase
Compound
Concentration (mol/L)
Inhibitory rate (%)
1a
1b
1c
1d
1e
1f
1g
1h
1i
2.5 Â 10À5
2.5 Â 10À5
2.5 Â 10À5
2.5 Â 10À5
2.5 Â 10À5
2.5 Â 10À5
2.5 Â 10À5
2.5 Â 10À5
2.5 Â 10À5
2.5 Â 10À5
7.38
2.73
4.64
4.37
0.95
2.19
1.64
0.27
3.00
1.09
1j
Figure 1. Molecular structure diagram of compound 1f with 30% probability
displacement ellipsoids.
Acknowledgements
Table 3
The authors acknowledge the Natural and Science Foundation
of Zhejiang Province for funding (Project M203027). We also
appreciate the National Center for Drug screening, Shanghai, China,
for the helps in the screening tests of anti-acetylcholinesterase
activity.
Values IC50 of all title compounds against BGC-823, KB and BEL-7402
Compound
BGC-823 (
l
g/mL)
KB (
lg/mL)
BEL-7402 (lg/mL)
1a
1b
1c
1d
1e
1f
1g
1h
1i
>100
5.6
56.2
13.1
>100
40.1
24
65.3
21.1
>100
>100
>100
0.6
104
12.5
29.2
72.7
37.4
>100
56.6
>100
>100
>100
1.77
45.4
>100
10.5
>100
26.1
>100
>100
>100
0.7
Supplementary data
Supplementary data associated with this article can be found, in
1j
DDP
References and notes
1. Su, Z. Z.; Lin, J.; Prewett, M.; Goldenstein, N. I.; Fisher, P. B. Anticancer Res. 1995,
15, 1841.
2. Natarajan, K.; Singh, S.; Burke, T. R., Jr.; Grunberger, D.; Aggarwal, B. B. Proc.
Natl. Acad. Sci. U.S.A. 1996, 93, 9090.
3. Lee, Y. J.; Liao, P. H.; Chen, W. K.; Yang, C. C. Cancer Lett. 2000, 153, 51.
4. Rao, C. V.; Desai, D.; Kaul, B.; Amin, S.; Reddy, B. S. Chem. Biol. Interact. 1992, 84,
277.
inhibitory cell growing for these compounds were summarized in
Table 3.
In Table 3, it is clear that those compounds with phenyl or
substituted phenyl in the amide moiety of the molecular struc-
ture(compound 1a, 1b, 1c, 1d, 1e, 1f and 1g) possess more strong
inhibitory activities than that with alicyclic substituents (com-
pound 1h and 1i) or hydrogen (compound 1j). This suggests that
an aryl substituent in the molecular amide moiety maybe more
preferred than an aliphatic or alicyclic substituent. Comparing
their structures and IC50 values of compound 1b–1e, we can con-
clude that the nature and position of substituent in the phenyl of
amide moiety exert an effect on the molecule’s inhibitory activi-
ties, and the m-methyl substituent in phenyl is more preferred
than p-methoxy and m or o-chloro substituent. Besides, compound
1g shows more strong inhibitory activities than compound 1d and
1f, which indicates that the substituents on the other phenyl bond-
ing to the C–C double bond also affect its activities.
In these compounds, compound 1b shows a better results than
others—its IC50 values against BGC-823, KB and BEL-7402 reach to
5.6 lg/mL, 13.1 lg/mL and 12.5 lg/mL, respectively. So, it would
be a valuable lead compound for further study, although its IC50
is larger approximately by an order of magnitude than that of
the general antitumor agent DDP.
Inspired by the fact that Entacapone has selective COMT inhib-
itory activity and has been clinically used as anti-parkinsonism
drug, we have carried out the screening test of inhibitory activities
against acetylcholinesterase for these compounds. Unfortunately,
all compounds showed a very limited activity—the inhibitory rate
being under 7.38% in the concentration of 2.5 Â 10À5 mol/L (Table
4). Maybe, this indicates that the aryl substituent in the amide
moiety of these compounds should be replaced by the aliphatic
substituent, such as the diethyl substituent in the Entacapone.
The further investigation on the SAR is ongoing.
5. Grunberger, D.; Banerjee, R.; Eisinger, K.; Oltz, E. M.; Efros, L.; Caldwell, M.;
Esteves, V.; Nakanishi, K. Experientia 1988, 44, 230.
6. Grange, J. M.; Davey, R. W. J. R. Soc. Med. 1990, 83, 159.
7. Son, S.; Lewis, B. A. J. Agric. Food. Chem. 2002, 50, 486.
8. Chen, J. H.; Ho, C. T. J. Agric. Food. Chem. 1997, 45, 2374.
9. Fesen, M. R.; Pommier, Y.; Leteurtre, F.; Hirogushi, S.; Yung, J.; Kohn, K. Biochem.
Pharmacol. 1994, 48, 595.
10. Gordin, A.; Kaakkola, S.; Teravainen, H. J. Neural Trans. 2004, 111, 1343.
11. Muller, T.; Erdmann, C.; Muhlack, S.; Bremen, D.; Przuntek, H.; Woitalla, D. J.
Clin. Neurosci. 2007, 14, 424.
12. Palmer, C. S.; Nuijten, M. J. C.; Schmier, J. K.; Subedi, P.; Snyder, E. H.
Pharmacoeconomics 2002, 20, 617.
13. Yasunori, K.; Hisao, T.; Koichi, S.; Hiroto, H.; Hideo, N.; Toshiko, O. EP 0,537,742,
1993.
14. Bruke, T. R., Jr.; Lim, B.; Marquez, V. E.; Li, Z. H.; Bolen, J. B.; Stefanova, I.; Horak,
I. D. J. Med. Chem. 1993, 36, 425.
15. Cossey, A. L.; Harris, R. L. N.; Huppatz, J. L.; Phillips, J. N. Aust. J. Chem. 1976, 29,
1039.
16. Shao, J. G.; Wang, P. Y.; Zheng, M.; Zhong, Q. Chin. J. Yangzhou Univ. 1998, 1, 17.
17. Seeger, Q.; Juergen, H. DE 2,538,254, 1977.
18. Bhawal, B. M.; Khanapure, S. P.; Edward, B. R. Synth. Commun. 1990, 20, 3235.
19. Corson, B. B.; Scott, R. W.; Vose, C. E.. In Organic Syntheses Coll; Blatt, A. H., Ed.;
John Wiley and Sons: New York, 1963; Vol. IV, p 977.
20. Grenier, J. L.; Cotelle, N.; Catteau, J. P.; Cotelle, P. J. Phys. Org. Chem. 2000, 13,
511.
21. Zhao, R. Master.Thesis, China Pharmaceutical University, May 2003.
22. Johannes, B. R.; Evert, H. K.; Juhani, H. E.; Kalevi, K. S.; Juhani, K. P.; Yvonne, L. B;
Topias, M. P.; Olavi, N. E. A.; Pentti, P.; Kyllikki, P. A.; Johan, P. J. DE 3,740,383,
1988.
23. Crystals of compound 1f for structural analysis were obtained by slow evaporation
of acetonitrile. Crystal data: C17H12N3ClO5, M = 373.75, triclinic, a = 8.166(3),
b = 10.320(4), c = 10.696(4) Å,
a
= 90.040(5), b = 108.302(5),
c
= 102.979(5)°,
U = 808(5) Å3, T = 293(2) K, space group P1, Z = 2, Dc = 1.536 g/cm3,
l
(Mo-
ꢀ
Ka , 3460 reflections measured, 2860 unique (Rint = 0.065)
) = 0.273 mmÀ1
which were used in all calculations. Fine R1 = 0.091, wR(F2) = 0.256 (all data).
Full crystallographic details of 1f have been deposited at the Cambridge
Crystallographic Data Center and allocated the deposition number CCDC
634551.