ACS Medicinal Chemistry Letters
Page 4 of 5
[7] Gordon, E. M.; Ondetti, M. A.; Pluscec, J.; Cimarusti, C. M.;
[27] Carpino, L. A.; El-Faham, A. J. Am. Chem. Soc. 1995, 117,
5401-5402 and references therein.
[28] Intermediate 19 could also be converted in to 11a. See
Supporting Information.
[29] Our choice of target prodrug for aztreonam was influenced by
our prior experience in designing oral prodrugs of avibactam. See
reference 9 for details.
[30] See Supporting Information for experimental conditions.
[31] Fukami, T.; Yokoi, T. The Emerging Role of Human Esterases.
Drug Metab. Pharmacol. 2012, 27, 466-477.
[32] See Supporting Information for experimental conditions. Several
reactions are in play in Table 1. When CES1 esterase is in high
concentrations, prodrugs are rapidly and cleanly converted to
aztreonam. Less CES1 esterase under these conditions leads to a
mixture of aztreonam and beta-lactam ring opened prodrug, which is
formed by a non-enzymatic, time dependent hydrolysis reaction. In
the control experiment, (no CES1 esterase), the products are ring
opened beta-lactam and aztreonam. This result indicates that there is a
relatively slow, non-enzymatic sulfate hydrolysis which occurs on the
prodrug under these reaction conditions.
Bonner, D. P.; Sykes, R. B. O-Sulfated. Beta-Lactam Hydroxamic
Acids (Monosulfactams). Novel Monocyclic Beta-Lactam Antibiotics
of Synthetic Origin. J. Am. Chem. Soc. 1982, 104, 6053−6060.
[8] Slusarchyk, W. A.; Dejneka, T.; Gordon, E. M.; Weaver, E. R.;
Koster, W. H. Monobactams: Ring Activating N-1 Substituents in
Monocyclic -Lactam Antibiotics. Heterocycles 1984, 21, 191-209.
[9] Sykes, R. B.; Cimarusti, C. M.; Bonner, D. P.; Bush, K.; Floyd, D.
M.; Georgopapadakou, N. H.; Koster, W. H.; Liu, W. C.; Parker, W.
L.; Principe, P. A.; Rathnum, M. L.; Slusarchyk, W. A.; Trejo, W. H.;
Wells, J. S. Monocyclic β-Lactam Antibiotics Produced by Bacteria.
Nature 1981, 291, 489-491.
[10] Imada, A.; Kitano, K.; Kintaka, K.; Muroi, M.; Asai, M.
Sulfazecin and Isosulfazecin, Novel β-Lactam Antibiotics of Bacterial
Origin. Nature 1981, 289, 590-591.
[11] Brogden, R N.; Heel, R. C. Aztreonam. Drugs 1986, 31, 96-130.
[12] Swabb, A. E. A.; Sugarman, A. A.; Stern, M. Oral
Bioavailability of the Mono-Bactam Aztreonam (SQ 26776) in
Healthy Subjects. Antimicrobial Agents and Chemotherapy 1983, 23,
548-550.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[13] Wang, D. Y.; Abboud, M. I.; Markoulides, M. S.; Brem, J.;
Schofield, C. J. The Road to Avibactam: The First Clinically Useful
Non-β-Lactam Working Somewhat Like a β-lactam. Future Med.
Chem. 2016, 8, 1063−1084.
[14] Ball, M.; Boyd, A.; Ensor, G. J.; Evans, M.; Golden, M.; Linke,
S. R.; Milne, D.; Murphy, R.; Telford, A.; Kalyan, Y.; Lawton, G. R.;
Racha, S.; Ronsheim, M.; Zhou, S. H. Development of
a
Manufacturing Route to Avibactam, a β-Lactamase Inhibitor. Org.
Proc. Res. Develop. 2016, 20, 1799−1805.
[15] Gordon, E. M.; Duncton, M. A. J.; Gallop, M. A. Orally
Absorbed Derivatives of the β‑Lactamase Inhibitor Avibactam.
Design of Novel Prodrugs of Sulfate Containing Drugs J. Med. Chem.
2018, 61, 10340−10344.
[16] Gordon, E. M.; Freund, J.; Gallop, M. A.; Duncton, M. A. J.
Beta-Lactamase Inhibitors and Uses Thereof. U.S. Patent 1,008,5999
(2018); Chem Abstr. 2018, 169, 422442.
[17] Gordon, E. M.; Freund, J.; Gallop, M. A.; Duncton, M. A. J.
Beta-Lactamase Inhibitors and Uses Thereof. WO 208557 (2018);
Chem Abstr. 2018, 169, 512024.
[18] The results with ARX-1796 in human will be published in due
course.
[19] Gordon, E. M.; Duncton, M. A. J.; Freund, J. Aztreonam
Derivatives, Their Use in Treating Bacterial Infections and Their
Preparation. U.S. Patent 0,100,516 (2019); Chem. Abstr. 2019, 170,
463801.
[20] Woulfe, S. R.; Iwagami, H; Miller, M. J. Efficient N-
Sulfenylation of Azetidinones Using S-Substituted Thiophthalimide.
Tetrahedron Lett. 1985, 26, 3891-3894.
[21] Spillane, W.; Malaubier, J. P. Sulfamic Acid and Its N- and O-
Substituted Derivatives. Chem. Rev. 2014, 114, 2507−2586 and
references therein.
[22] Prasad, G.; Amoroso, A; Borketey, L.S.; Schnarr, N. N-Activated
β-lactams as Versatile Reagents for Acyl Carrier Protein Labeling.
Org. Biomol. Chem. 2012, 10, 1992.
[23] Jarrahpour, A.; Zarei, M. Synthesis of Novel N-Sulfonyl
Monocyclic β-Lactams as Potential Antibacterial Agents. Molecules
2006, 11, 49-58.
[24] Floyd, D. M.; Fritz, A. W.; Pluscec, J; Weaver, E. R.; Cimarusti,
C. M. Monobactams. Preparation of (S)-3-Amino-oxoazetidine-l-
sulfonic Acids From L--Amino-and Hydroxy Acids via Their
Hydroxamic Esters. J. Org. Chem. 1982, 47, 5160-5167.
[25] Miller, M. J.; Mattingly, P. G.; Morrison, M. A.; Kerwin, J. F.
Synthesis of -Lactams from Substituted Hydroxamic Acids. J. Am.
Chem. Soc. 1980, 102, 7026-7032.
[26] Martin, M. J.; Rodriguez-Acebes, R.; Garcia-Ramos, Y.;
Martinez, V.; Murcia, C.; Digon, I.; Marco, I.; Pelay-Gimeno, M.;
Fernandez, R.; Reyes, F.; Francesch, A. M.; Munt, S.; Tulla-Puche, J.;
Albericio, F.; Cuevas, C. Stellatolides, a New Cyclodepsipeptide
Family from the Sponge Ecionemia acervus: Isolation, Solid-Phase
Total Synthesis, and Full Structural Assignment of Stellatolide A. J.
Am. Chem. Soc. 2014, 136, 6754-6762.
ACS Paragon Plus Environment