SCHEME 1
Total Synthesis of (()-5-Deoxystrigol via
Reductive Carbon-Carbon Bond Formation
Mitsuru Shoji,* Eriko Suzuki, and Minoru Ueda*
Department of Chemistry, Graduate School of Science,
Tohoku UniVersity, Aoba-ku, Sendai 980-8578, Japan
shoji-org@mail.tains.tohoku.ac.jp;
ReceiVed January 30, 2009
The total synthesis of 5-deoxystrigol was successfully carried
out via the regioselective coupling reaction between the
aluminum ate complex of an alkyne and an epoxide and the
two reductive carbon-carbon bond formations in the pres-
ence of transition metals as key steps.
supply of 1 and preparation of its derivatives that could act as
molecular probes are strongly desired for further biological
research.
Although it is well-known that more than 80% of terrestrial
plants utilize symbiotic associations with fungi1 in which plants
provide glucose to fungi and in return fungi provide phosphates
to plants, the concise mechanisms of such mutualism has yet
to be defined. In 2005, Akiyama and co-workers reported that
the roots of Lotus japonicus secrete 5-deoxystrigol (1), a
signaling molecule that induces hyphal branching in arbuscular
mycorrhizal fungi.2 Moreover, 1 was also very recently reported
as a new phytohormone inhibiting shoot branching.3 Thus, the
biological significance of 1 dramatically increases in many fields
such as chemical ecology, chemical biology, and plant biology.
To date, seven naturally occurring strigolactones including 1
have been isolated.4 Unfortunately, because of its low prevalence
in plant materials and the instability of the molecule, very limited
amounts of 1 are available from nature. Thus, the synthetic
The synthesis of 1 has been carried out by Welzel and co-
workers (as a synthetic derivative of strigol)5 and by Akiyama
and co-workers to confirm the structure of the natural product.2
In most cases of the synthesis of strigolactones,5,6 the prepara-
tions of the tricyclic strigolactone framework involved stepwise
construction. In contrast, we envisioned a one-step polycycliza-
tion strategy that was inspired by terpene biosynthesis.7 As
shown in Scheme 1, the retrosynthetic analysis of 1 is described
as follows: (i) the side chain of 1 can be introduced into lactone
2 following reported procedures,5,6 (ii) the tricyclic skeleton of
2 can be formed in one step via transition metal-mediated
reductive carbon-carbon bond formation from acyclic com-
pound 3, (iii) diketoaldehyde 3, which possesses every requisite
(1) Smith, S. E.; Read, D. J. Mycorrhizal Symbiosis; Academic Press: San
Diego, 1997.
(2) Akiyama, K.; Matsuzaki, K.-I.; Hayashi, H. Nature (London, U.K.) 2005,
435, 824–827.
(5) Frischmuth, K.; Samson, E.; Kranz, A.; Welzel, P.; Meuer, H.; Sheldrick,
W. S. Tetrahedron 1991, 47, 9793–9806.
(6) Strigol: (a) MacAlpine, G. A.; Raphael, R. A.; Shaw, A.; Taylor, A. W.;
Wild, H.-J. J. Chem. Soc., Perkin Trans. 1 1976, 410–416. (b) Heather, J. B.;
Mittal, R. S. D.; Sih, C. J. J. Am. Chem. Soc. 1976, 98, 3661–3669. (c) Brooks,
D. W.; Bevinakatti, H. S.; Kennedy, E.; Hathaway, J. J. Org. Chem. 1985, 50,
628–632. (d) Dailey, O. D., Jr. J. Org. Chem. 1987, 52, 1984–1989. (e) Berlage,
U.; Schmidt, J.; Peters, U.; Welzel, P. Tetrahedron Lett. 1987, 28, 3091–3094.
(f) Samson, E.; Frischmuth, K.; Berlage, U.; Heinz, U.; Hobert, K.; Welzel, P.
Tetrahedron 1991, 47, 1411–1416. (g) Hirayama, K; Mori, K. Eur. J. Org. Chem.
1999, 2211–2217. (h) Reizelman, A.; Scheren, M.; Nefkens, G. H. L.;
Zwanenburg, B. Synthesis 2000, 1944–1951Sorgolactone: (i) Sugimoto, Y.;
Wigchert, S. C. M.; Thuring, J. W. J. F.; Zwanenburg, B. J. Org. Chem. 1998,
63, 1259–1267. (j) Matsui, J.; Bando, M.; Kido, M.; Takeuchi, Y.; Mori, K.
Eur. J. Org. Chem. 1999, 2183–2194Orobanchol: (k) Matsui, J.; Yokota, T.;
Bando, M.; Takeuchi, Y.; Mori, K. Eur. J. Org. Chem. 1999, 2201–2210. (l)
Hirayama, K.; Mori, K. Eur. J. Org. Chem. 1999, 2211–2217.
(3) (a) Gomez-Roldan, V.; Fermas, S.; Brewer, P. B.; Puech-Page`s, V.; Dun,
E. A.; Pillot, J.-P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.-C.;
Bouwmeester, H.; Be´card, G.; Beveridge, C. A.; Rameau, C.; Rochange, S. F.
Nature (London, U.K.) 2008, 455, 189–194. (b) Umehara, M.; Hanada, A.;
Yoshida, S.; Akiyama, K.; Arite, T.; Takeda-Kamiya, N.; Magome, H.; Kamiya,
Y.; Shirasu, K.; Yoneyama, K.; Kyozuka, J.; Yamaguchi, S. Nature (London,
U.K.) 2008, 455, 195–200.
(4) Strigol: (a) Cook, C. E.; Whichard, L. P.; Turner, B.; Wall, M. E.; Egley,
G. H. Science 1966, 154, 1189–1190. Strigyl acetate: (b) Cook, C. E.; Whichard,
L. P.; Wall, M. E.; Egley, G. H.; Coggon, P.; Luhan, P. A.; McPhail, A. T.
J. Am. Chem. Soc. 1972, 94, 6198–6199Sorgolactone: (c) Hauck, C.; Muller,
S.; Schildknecht, H. J. Plant Physiol. 1992, 139, 474–478. Alectrol and
orobanchol: (d) Yokota, T.; Sakai, H.; Okuno, K.; Yoneyama, K.; Takeuchi, Y.
Phytochemistry 1998, 49, 1967–1973Solgomol: (e) Xie, X.; Yoneyama, K.;
Kusumoto, D.; Yamada, Y.; Takeuchi, Y.; Sugimoto, Y.; Yoneyama, K.
Tetrahedron Lett. 2008, 49, 2066–2068.
(7) Ogura, K. J. Synth. Org. Chem., Jpn. 1975, 33, 256–269. (a) Biosynthesis
of strigolactones via a C40 carotenoid is also revealed: Akiyama, K.; Hayashi,
H. New Phytol. 2008, 178, 695–698.
3966 J. Org. Chem. 2009, 74, 3966–3969
10.1021/jo9002085 CCC: $40.75 2009 American Chemical Society
Published on Web 04/09/2009