1892
Y. Ishida et al. / Tetrahedron Letters 50 (2009) 1889–1892
15; (d) Sutherland, A.; Willis, C. L. Nat. Prod. Rep. 2000, 17, 621; (e) Yoder, N. C.;
F5C2
F5C2
F5C2
NaBH3CN (1.2 eq)
HCl (10 eq)
Kumar, K. Chem. Soc. Rev. 2002, 31, 335; (f) Qiu, X.-L.; Meng, W.-D.; Qing, F.-L.
Tetrahedron 2004, 60, 6711; (g) Jäckel, C.; Koksch, B. Eur. J. Org. Chem. 2005,
4483.
O
O
O
HN
Ph
HN
Ph
(3S,5S)-11
d.r. = 96:4
Isolated yield of (3S,5S)-11: 64%
HN
Ph
(3S,5R)-11
CH2Cl2/dioxane
(2:1, v/v)
rt, 48 h
O
O
O
2. (a) Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015; (b) Cheng, R. P.;
Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101, 3219.
(S)-10
3. (a) Fustero, S.; Salavert, E.; Pina, B.; Ramírez de Arellano, C.; Asensio, A.
Tetrahedron 2001, 57, 6475; (b) Fustero, S.; Pina, B.; Salavert, E.; Navarro, A.;
Ramírez de Arellano, M. C.; Fuentes, A. S. J. Org. Chem. 2002, 67, 4667; (c)
Fustero, S.; Sánchez-Roselló, M.; Sanz-Cervera, J. F.; Aceña, J. L.; del Pozo, C.;
Fernández, B.; Bartolomé, A.; Asensio, A. Org. Lett. 2006, 8, 4633.
4. (a) Soloshonok, V. A.; Kirilenko, A. G.; Kukhar, V. P.; Resnati, G. Tetrahedron Lett.
1993, 34, 3621; (b) Soloshonok, V. A.; Kirilenko, A. G.; Galushko, S. V.; Kukhar, S.
V. Tetrahedron Lett. 1994, 35, 5063; (c) Soloshonok, V. A.; Ono, T.; Soloshonok, I.
V. J. Org. Chem. 1997, 62, 7538; (d) Soloshonok, V. A.; Ohkura, H.; Yasumoto, M.
J. Fluorine Chem. 2006, 127, 924; (e) Soloshonok, V. A.; Ohkura, H.; Yasumoto, M.
J. Fluorine Chem. 2006, 127, 930.
5. (a) Lebouvier, N.; Laroche, C.; Huguenot, F.; Brigaud, T. Tetrahedron Lett. 2002,
43, 2827; (b) Funabiki, K. Nagamori; Matsui, M. J. Fluorine Chem. 2004, 125,
1347; (c) Fustero, S.; Jiménez, D.; Sanz-Cervera, J. F.; Sánchez-Roselló, M.;
Esteban, E.; Simón-Fuentes, A. Org. Lett. 2005, 7, 3433; (d) Santos, M. D.;
Crousse, B.; Bonnet-Delpon, D. Synlett 2008, 399.
6. (a) Galushko, S. V.; Shishkina, I. P.; Soloshonok, V. A. J. Chromatogr. 1992, 592,
345; (b) Soloshonok, V. A.; Kirilenko, A. G.; Fokina, N. A.; Shishkina, I. P.;
Galushko, S. V.; Kukhar, V. P.; Švedas, V. K.; Kozlova, E. V. Tetrahedron:
Asymmetry 1994, 5, 1119; (c) Soloshonok, V. A.; Kirilenko, A. G.; Fokina, N. A.;
Kukhar, V. P.; Galushko, S. V.; Švedas, V. K.; Resnati, G. Tetrahedron: Assymmetry
1994, 5, 1225; (d) Michaut, V.; Metz, F.; Paris, J.-M.; Plaquevent, J.-C. J. Fluorine
Chem. 2007, 128, 889.
7. (a) Cimarelli, C.; Palmieri, G. J. Org. Chem. 1996, 61, 5557; (b) Ikemoto, N.;
Tellers, D. M.; Dreher, S. D.; Liu, J.; Huang, A.; Rivera, N. R.; Njolito, E.; Hsiao, Y.;
McWilliams, J. C.; Williams, J. M.; Armstrong, J. D., III; Sun, Y.; Mathre, D. J.;
Grabowski, E. J. J.; Tillyer, R. D. J. Am. Chem. Soc. 2004, 126, 3048.
8. (a) Ohkura, H.; Berbasov, D. O.; Soloshonok, V. A. Tetrahedron 2003, 59, 1647;
(b) Berbasov, D. O.; Ojemaye, I. D.; Soloshonok, V. A. J. Fluorine Chem. 2004, 125,
603.
Scheme 2. Asymmetric reduction of an analogous cyclic enamino-ester having a
pentafluoroethyl group ((S)-10).
synthetic route to enantiopure 1, which had been limited to the
synthesis based on the asymmetric proton shift reaction4d,e or
the resolution of its racemate.6b–d
Considering the fact that 4-fluorinated 3-oxoalkanoates and
their equivalents are one of the most easily accessible classes of
fluorinated building blocks, the present method would be highly
general for the preparation of a wide range of b-fluoroalkyl-b-ami-
no acids. As a preliminary study to prove the generality, an analo-
gous cyclic enamino-ester bearing a pentafluoroethyl group in the
place of a trifluoromethyl group ((S)-10) was prepared and em-
ployed for the same hydride reduction (Scheme 2).16 As was ex-
pected, the cyclic enamino-ester (S)-10 was converted into the
corresponding cyclic amino-ester (3S,5S)-11 with excellent diaste-
reoselectivity (dr = 96:4) without any optimization of the reaction
conditions. The major isomer could be easily separated from the
minor isomer by simple column chromatography, taking advan-
tage of large difference in their polarity. Moreover, the absolute
configuration of the major isomer, deduced from 1H and 19F NMR
studies, was consistent with the case of (S)-6 ((3S,5S)-isomer),
which implies that the face selectivity of the hydride addition
was controlled by a common mechanism. In other words, the abso-
lute configuration of the major isomer might be rationally pre-
dicted in the present hydride reduction.
In summary, a new synthetic method to access enantiopure
b-perfluoroalkyl-b-amino acids was established, which could be
conducted without any expensive reagent, special apparatus/
technique, nor tedious chromatographic separation. Concerning
the key asymmetric hydride reduction, prominent reliability of
the present method was demonstrated in terms of stereoselectivi-
ty, predictability of the stereochemical preference, and easiness in
isomer separation. Such a practical and reliable synthetic method
would contribute to the further exploration of b-perfluoroalkyl-
b-amino acids, including their application to de-novo peptide
chemistry.
9. (a) Slusarczuk, G. M. J.; Joullié, M. M. J. Org. Chem. 1971, 36, 37; (b) Yamanaka,
H.; Tamura, K.; Funabiki, K.; Fukunishi, K.; Ishihara, T. J. Fluorine Chem. 1992, 57,
177.
10. Ishii, A.; Miyamoto, F.; Higashiyama, K.; Mikami, K. Tetrahedron Lett. 1998, 39,
1199.
11. Richard, S.; Prié, G.; Guignard, A.; Thibonnet, J.; Parrain, J.-L.; Duchêne, A.;
Abarbri, M. Helv. Chim. Acta. 2003, 86, 726.
12. Simmons, H. E.; Wiley, D. W. J. Am. Chem. Soc. 1960, 82, 2288.
13. A plausible mechanism for the formation of 9 is as follows: For examples of a
related rearrangement reaction, see: (a) Soloshonok, V. A.; Ohkura, H.;
Yasumoto, M. Mendeleev Commun. 2006, 16, 165; (b) Soloshonok, V. A.;
Ohkura, H.; Yasumoto, M. J. Fluorine Chem. 2006, 127, 708.
F3C
N
F3C
N−
F3C
F3C
H+
Base
O
O
O
H
H
N
N
O
9
Ph
O−
O−
O
O
Ph
H
Ph
Ph
Me
(S)-6
14. Crystallographic data for the determination of the absolute configuration of
1 has been limited to one report (Kukhar, V. P.; Soloshonok, V. A.; Švedas, V.
K.; Kotik, N. V.; Galaev, I. Y.; Kirilenko, A. G.; Kozlove, E. V. Bioorgan. Khim.
1993, 19, 474). However, the assignment was based on an X-ray crystal
structure of (–)-1 having neither chiral internal reference nor heavy atom
indispensable for the observation of anomalous X-ray scattering. In
comparison with the present result, the assignment made by Kukhar et al.
was confirmed to be correct.
15. As far as we know (S)-6 and (3S,5S)-7 have been deposited with the Cambridge
Crystallographic Data Center as Supplementary Publication Numbers CCDC
709483 and CCDC 709484, respectively. These data can be obtained free of
ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre,
12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
Supplementary data
Supplementary data (determination of the enantiomeric purity
of 3-amino-4,4,4-trifluorobutanoic acid (1)) associated with this
article can be found, in the online version, at doi:10.1016/
References and notes
1. (a) For reviews, see: Fluorine in Bioorganic Chemistry; Welch, J. T.,
Eswarakrishnan, S., Eds.; John Wiley & Sons: New York, 1991; (b) Fluorine
Containing Amino Acids: Synthesis and Properties; Kukhar, V. P., Soloshonok, V. A.,
Eds.; John Wiley & Sons: New York, 1995; (c) Tolman, V. Amino Acids 1996, 11,
16. The cyclic enamino-ester (S)-10 was prepared from an easily available
fluorinated building block (ethyl 4,4,5,5,5-pentafluoroethylpent-1-ynoate).
See Ref. 11.