3088
X. Chen et al. / Tetrahedron 65 (2009) 3085–3089
filtered through a pad of Celite and the filtrate was washed twice
with brine. The organic layer was dried over Na2SO4 and concen-
trated under vacuum. The residue was purified by column chro-
matography on silica gel with hexane/ether (1:1 to 0:1 ratio) to give
the dimerized products.
4.3.7. 2,20-Bis(3-methylpyridin-2-yl)biphenyl (10a)
Substrate 10 was dimerized following the general procedure.
After purification by column chromatography, 10a was obtained as
a brown oil (60.2 mg, 89% yield). 1H NMR (400 MHz, CDCl3)
d
8.45
(d, J¼4.5 Hz, 2H), 7.85 (d, J¼8.0 Hz, 2H), 7.59–6.86 (m, 12H), 1.89 (s,
6H); 13C NMR (100 MHz, CDCl3)
161.2, 147.2, 145.6, 139.2, 138.2,
d
4.3.1. 2,20-Bis(pyridin-2-yl)biphenyl (4b)
131.6, 129.4, 128.5, 128.1, 123.3, 122.3, 19.4; HRMS (EI) calcd for
C24H20N2 (Mþ) 336.1627, found 336.1624.
Substrate 4 was dimerized following the general procedure.
After purification by column chromatography, 4b was obtained as
a yellow solid (47.7 mg, 77% yield). 1H NMR (400 MHz, CDCl3)
d
8.32
4.3.8. 3,30-Di(pyridin-2-yl)-2,20-binaphthyl (11a) and 2,20-(1,20-
binaphthyl-2,30-diyl)dipyridine (11b)
Substrate 11 was dimerized following the general procedure.
After purification by column chromatography, 11a was obtained as
a yellow solid (21.2 mg, 26% yield) and 11b was obtained as a white
solid (13.3 mg, 16% yield).
(d, J¼4.8 Hz, 2H), 7.54 (d J¼7.6 Hz, 1H), 7.41–7.36 (m, 6H), 7.30 (t,
J¼8.0 Hz, 2H), 6.99 (dd, J¼7.6, 4.8 Hz, 1H), 6.76 (d, J¼7.9 Hz, 1H); 13C
NMR (100 MHz, CDCl3)
d 158.2, 149.2, 140.1, 140.1, 135.4, 131.5,
130.2, 128.8, 128.0, 124.6, 121.4; HRMS (EI) calcd for C22H16N2 (Mþ)
308.1314, found 308.1310.
Compound 11a: 1H NMR (400 MHz, CDCl3)
d
8.30 (d, J¼4.2 Hz,
4.3.2. 2,20-(5,50-Dimethylbiphenyl-2,20-diyl)dipyridine (5a)
Substrate 5 was dimerized following the general procedure.
After purification by column chromatography, 5a was obtained as
2H), 8.14 (s, 2H), 8.03 (s, 2H), 7.96 (d, J¼7.8 Hz, 2H), 7.91 (d, J¼7.8 Hz,
2H), 7.50–7.55 (m, 4H), 7.27–7.19 (m, 2H), 7.08–6.93 (m, 2H), 6.71 (d,
J¼7.9 Hz, 2H); 13C NMR (100 MHz, CDCl3)
d 157.8,149.2,138.5,135.5,
133.6, 133.1, 130.8, 129.7, 128.6, 127.9, 126.9, 126.6, 124.6, 121.5;
a yellow solid (45.4 mg, 68% yield). 1H NMR (400 MHz, CDCl3)
d
8.27
(d, J¼4.8 Hz, 2H), 7.48–7.19 (m, 8H), 6.99–6.90 (m, 2H), 6.68 (d,
HRMS (EI) calcd for C30H20N2 (Mþ) 408.1627, found 408.1627.
J¼7.9 Hz, 2H), 2.43 (s, 6H); 13C NMR (100 MHz, CDCl3)
d
158.1, 149.0,
Compound 11b: 1H NMR (400 MHz, CDCl3)
d
8.37 (d, J¼4.8 Hz,
139.9, 138.7, 137.4, 135.3, 132.1, 130.1, 128.7, 124.5, 121.1, 21.5; HRMS
(EI) calcd for C24H20N2 (Mþ) 336.1627, found 336.1623.
1H), 8.33 (d, J¼4.9 Hz, 1H), 8.22 (s, 1H), 7.94 (m, 5H), 7.81–7.87 (m,
2H), 7.73 (d, J¼8.5 Hz, 1H), 7.56–7.49 (m, 3H), 7.41–7.38 (m, 1H), 7.19
(m, 2H), 7.00–6.92 (m, 2H), 6.85 (d, J¼7.9 Hz, 1H), 6.71 (d, J¼8.0 Hz,
4.3.3. 2,20-(5,50-Bis(trifluoromethyl)biphenyl-2,20-diyl)-
dipyridine (6a)
Substrate 6 (0.2 mmol) was reacted with Cu(OAc)2 (36.4 mg,
0.2 mmol) and I2 (50.8 mg, 0.2 mmol). The general procedure was
followed to give product 6a as a brown solid (26.0 mg, 58% yield).
1H); 13C NMR (100 MHz, CDCl3)
d 158.7, 157.7, 149.1, 149.1, 139.6,
137.7, 136.8, 135.4, 135.4, 135.0, 133.7, 133.2, 133.1, 133.0, 132.3,
129.9, 128.7, 128.3, 127.9, 127.2, 126.9, 126.8, 126.7, 126.6, 126.3,
125.2, 124.0, 121.6, 121.4; HRMS (EI) calcd for C30H20N2 (Mþ)
408.1627, found 408.1626.
1H NMR (400 MHz, CDCl3)
d
8.36 (d, J¼4.6 Hz, 2H), 7.66 (s, 4H), 7.59
(s, 2H), 7.42 (t, J¼7.7 Hz, 2H), 7.10 (dd, J¼7.5, 4.9 Hz, 2H), 6.86 (d,
Acknowledgements
J¼7.9 Hz, 2H); 13C NMR (100 MHz, CDCl3)
d 156.6, 149.6, 143.4,
139.5, 135.9, 130.9, 128.2, 125.4, 125.1, 124.5, 122.7, 122.3; HRMS (EI)
We thank The Scripps Research Institute, Brandeis University
and the U.S. National Science Foundation (NSF CHE-0615716) for
financial support, and the Camille and Henry Dreyfus Foundation
for a New Faculty Award.
calcd for C24H14F6N2 (Mþ) 444.1061, found 444.1060.
4.3.4. 2,20-(3,30-Difluorobiphenyl-2,20-diyl)dipyridine (7a)
Substrate 7 was dimerized following the general procedure.
After purification by column chromatography, 7a was obtained as
a brown oil (17.1 mg, 25% yield). 1H NMR (400 MHz, CDCl3)
d 8.47 (d,
References and notes
J¼4.9 Hz, 2H), 7.51 (dt, J¼7.8, 1.5 Hz, 2H), 7.34–6.80 (m, 12H); 13C
1. Bringmann, G.; Gu¨nther, C.; Ochse, M.; Schupp, O.; Tasler, S. Biaryls in Nature: A
Multi-Facetted Class of Stereochemically, Biosynthetically, and Pharmacologi-
cally Intriguing Secondary Metabolites. In Progress in the Chemistry of Organic
Natural Products; Herz, W., Falk, H., Kirby, G. W., Moore, R. E., Eds.; Springer:
New York, NY, 2001; Vol. 82.
2. (a) Brunel, J. M. Chem. Rev. 2005, 105, 857–898; (b) Pu, L. Chem. Rev. 1998, 98,
2405–2494; (c) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley:
New York, NY, 1994.
3. For biaryl synthesis from aryl halides and pseduo halides, see: (a) Metal-Cat-
alyzed Cross-coupling Reactions; Dieterich, F., Stang, P. J., Eds.; Wiley-VCH: New
York, NY, 1998; (b) Hassan, J.; Se´vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M.
Chem. Rev. 2002, 102, 1359–1470.
4. For reviews, see: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107,
174–238; (b) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41,
1013–1025; (c) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173–1193;
(d) Ackermann, L. Top. Organomet. Chem. 2007, 24, 35–60; (e) Yu, J.-Q.; Giri, R.;
Chen, X. Org. Biomol. Chem. 2006, 4, 4041–4047; (f) Daugulis, O.; Zaitsev, V. G.;
Shabashov, D.; Pham, Q.-N.; Lazareva, A. Synlett 2006, 3382–3388; (g) Catellani,
M. Top. Organomet. Chem. 2005, 14, 21–53; (h) Kakiuchi, F.; Chatani, N. Top.
Organomet. Chem. 2004, 11, 45–79.
NMR (100 MHz, CDCl3)
d
160.3 (d, JC–F¼246.0 Hz), 153.6, 149.2,
141.9, 135.8, 129.1 (d, JC–F¼9.0 Hz), 127.2 (d, JC–F¼4.0 Hz), 126.3,
122.1, 114.9, 115.1; HRMS (EI) calcd for C22H14F2N2 (Mþ) 344.1125,
found 344.1127.
4.3.5. 2,20-(4,40-Difluorobiphenyl-2,20-diyl)dipyridine (8a)
Substrate 8 (0.25 mmol) was reacted with Cu(OAc)2 (72.8 mg,
0.4 mmol) and I2 (101.6 mg, 0.4 mmol). The general procedure was
followed to give product 8a as a brown solid (19.4 mg, 43% yield).
1H NMR (400 MHz, CDCl3)
d
8.38 (t, J¼4.8 Hz, 2H), 7.46–7.31 (m,
4H), 7.29–7.24 (m, 2H), 7.14–7.05 (m, 4H), 6.95 (dd, J¼7.9, 6.7 Hz,
2H); 13C NMR (100 MHz, CDCl3)
d
160.7 (d, JC–F¼245.0 Hz), 159.4,
157.0, 149.2, 142.9, 135.7, 130.1 (d, JC–F¼9.0 Hz), 125.7, 123.9, 122.0,
115.4; HRMS (EI) calcd for C22H14F2N2 (Mþ) 344.1125, found
344.1121.
5. For recent examples with Pd catalysts, see: (a) Giri, R.; Maugel, N.; Li, J.-J.;
Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007,
129, 3510–3511; (b) Shabashov, D.; Daugulis, O. J. Org. Chem. 2007, 72, 7720–
7725; (c) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc. 2007, 129,
9879–9884; (d) Chiong, H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449–1451; (e)
Yang, S.; Li, B.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 6066–6067.
6. For the use of C–H bond activation approach in the total synthesis of complex
natural products, see: (a) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417–
424; (b) Fleming, J. J.; McReynolds, M. D.; Du Bois, J. J. Am. Chem. Soc. 2007, 129,
9964–9975; (c) Lu, J.; Tan, X.; Chen, C. J. Am. Chem. Soc. 2007, 129, 7768–7769;
(d) Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.;
Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857–12869; (e) Tambar, U. K.; Ebner,
D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2006, 128, 11752–11753; (f) Baran, P. S.;
4.3.6. (6,60-Di(pyridin-2-yl)biphenyl-3,30-diyl)dimethanol (9a)
Substrate 9 was dimerized following the general procedure.
After purification by column chromatography, 9a was obtained as
a brown oil (33.3 mg, 44% yield). 1H NMR (400 MHz, CDCl3)
d 8.45
(d, J¼4.5 Hz, 2H), 7.85 (d, J¼8.0 Hz, 2H), 7.51–7.41 (m, 2H), 7.39–7.30
(m, 2H), 7.20–7.08 (m, 4H), 7.00 (t, J¼7.7 Hz, 2H); 13C NMR
(100 MHz, CDCl3)
d 157.4, 149.9, 141.9, 138.9, 137.1, 128.4, 127.5,
127.3, 122.6, 122.4, 120.8, 65.1; HRMS (EI) calcd for C24H20N2O2
(Mþ) 368.1525, found 368.1528.