1270
J. B. Houze et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1267–1270
(a)
(b)
(c)
Figure 2. Effect of compound 8 during OGTT in wild type and GPR40 KO mice.
7. Dobbins, R. L.; Chester, M. W.; Daniels, M. B.; McGarry, J. D.; Stein, D. T. Diabetes
1998, 47, 1613.
8. McGarry, J. D.; Dobbins, R. L. Diabetologia 1999, 42, 128.
An external panel of 64 receptors also revealed no significant activ-
ity with the exception of weak inhibition (IC50 = 3 M) on the a2
adrenergic receptor. Overall, compound 8 was both highly potent
l
-
9. (a) Itoh, Y.; Kawamata, Y.; Harada, M.; Kobayashi, M.; Fujii, R.; Fukusumi, S.;
Ogi, K.; Hosoya, M.; Tanaka, Y.; Uejima, H.; Tanaka, H.; Maruyama, M.; Satoh,
R.; Okubo, S.; Kizawa, H.; Komatsu, H.; Matsumura, F.; Noguchi, Y.; Shinohara,
T.; Hinuma, S.; Fujisawa, Y.; Fujino, M. Nature 2003, 422, 173; (b) Briscoe, C. P.;
Tadayyon, M.; Andrews, J. L.; Benson, W. G.; Chambers, J. K.; Eilert, M. M.; Ellis,
C.; Elshourbagy, N. A.; Goetz, A. S.; Minnick, D. T.; Murdock, P. R.; Sauls, H. R.,
Jr.; Shabon, U.; Spinage, L. D.; Strum, J. C.; Szekeres, P. G.; Tan, K. B.; Way, J. M.;
Ignar, D. M.; Wilson, S.; Muir, A. I. J. Biol. Chem. 2003, 278, 1130; (c) Kotarsky, K.;
Nilsson, N. E.; Flodgren, E.; Owman, C.; Olde, B. Biochem. Biophys. Res. Commun.
2003, 301, 406.
and selective in vitro.
In addition to its favorable profile in vitro, compound 8 distin-
guished itself by displaying an excellent pharmacokinetic profile
in multiple species. As shown in Table 3, compound 8 combines
low clearance, long half-life, and high oral bioavailability in four
preclinical species.
In order to confirm that the potential antidiabetic activity of
compound 8 was mediated by GPR40, an oral glucose tolerance
test (OGTT) was carried out in wild-type and GPR40 KO mice.
The DPP-4 inhibitor sitagliptin was used at a maximally efficacious
dose as a positive control.20 Compounds were dosed orally 60 min
prior to the oral glucose challenge. As shown in Figure 2, com-
pound 8 substantially blunted plasma glucose excursion compared
to both vehicle and positive control in wild-type animals consis-
tent with its activity as an insulin secretagogue as shown in
MIN6 cells (Fig. 2a). The total glucose AUC was also reduced in a
statistically significant manner (Fig. 2c). In contrast, no effect in
the OGTT was seen in the GPR40 KO animals after dosing with
10. Brown, A. J.; Jupe, S.; Briscoe, C. P. DNA Cell Biol. 2005, 24, 54.
11. (a) Garrido, D. M.; Corbett, D. F.; Dwornik, K. A.; Goetz, A. S.; Littleton, T. R.;
Mckeown, S. C.; Mills, W. Y.; Smalley, T. L.; Briscoe, C. P.; Peat, A. J. Bioorg. Med.
Chem. Lett. 2006, 16, 1840; (b) Song, F.; Lu, S.; Gunnet, J.; Xu, J. Z.; Wines, P.;
Proost, J.; Liang, Y.; Baumann, C.; Lenhard, J.; Murray, W. V.; Demarest, K. T.; Kuo,
G.-H. J. Med. Chem. 2007, 50, 2807; (c) McKeown, S. C.; Corbett, D. F.; Goetz, A. S.;
Littleton, T. R.; Bigham, E.; Briscoe, C. P.; Peat, A. J.; Watson, S. P.; Hickey, D. M. B.
Bioorg. Med. Chem. Lett. 2007, 17, 1584; (d) Christiansen, E.; Urban, C.; Merten,
N.; Liebscher, K.; Karlsen, K. K.; Hamacher, A.; Spinrath, A.; Bond, A. D.; Drewke,
C.; Ullrich, S.; Kassack, M. U.; Kostenis, E.; Ulven, T. J. Med. Chem. 2008, 51, 7061;
(e) Humphries, P. S.; Benbow, J. W.; Bonin, P. D.; Boyer, D.; Doran, S. D.; Frisbie, R.
K.; Piotrowski, D. W.; Balan, G.; Bechle, B. M.; Conn, E. L.; Dirico, K. J.; Oliver, R.
M.; Soeller, W. C.; Southers, J. A.; Yang, X. Bioorg. Med. Chem. Lett. 2009, 19, 2400;
(f) Negoro, N.; Sasaki, S.; Mikami, S.; Ito, M.; Suzuki, M.; Tsujihata, Y.; Ito, R.;
Harada, A.; Takeuchi, K.; Suzuki, N.; Miyazaki, J.; Santou, T.; Odani, T.; Kanzaki,
N.; Funami, M.; Tanaka, T.; Kogame, A.; Matsunaga, S.; Yasuma, T.; Momose, Y.
ACS Med. Chem. Lett. 2010, 1, 290; (g) Christiansen, E.; Due-Hansen, M. E.; Urban,
C.; Merten, N.; Pfleiderer, M.; Karlsen, K. K.; Rasmussen, S. S.; Steensgaard, M.;
Hamacher, A.; Schmidt, J.; Drewke, C.; Petersen, R. K.; Kristiansen, K.; Ullrich, S.;
Kostenis, E.; Kassack, M. U.; Ulven, T. A. C. S. Med. Chem. Lett. 2010, 1, 345; (h)
Walsh, S. P.; Severino, A.; Zhou, C.; He, J.; Liang, G.-B.; Tan, C. P.; Cao, J.; Eiermann,
G. J.; Xu, L.; Salituro, G.; Howard, A. D.; Mills, S. G.; Yang, L. Bioorg. Med. Chem.
Lett. 2011, 21, 3390; (i) Sasaki, S.; Kitamura, S.; Negoro, N.; Suzuki, M.; Tsujihata,
Y.; Suzuki, N.; Santou, T.; Kanzaki, N.; Harada, M.; Tanaka, Y.; Kobayashi, M.;
Tada, N.; Funami, M.; Tanaka, T.; Yamamoto, Y.; Fukatsu, K.; Yasuma, T.;
Momose, Y. J. Med. Chem. 2011, 54, 1365.
compound
8 where the positive control retained activity
(Fig. 2b). The complete absence of a response in the GPR40 KO ani-
mals establishes that the effects of compound 8 are GPR40 medi-
ated. The behavior of compound 8 in this GTT study is consistent
with the hypothesis that selective GPR40 agonists could serve as
glucose-dependent insulin secretagogues.
In summary, through optimization of a lead series of simple ben-
zyloxy-substituted phenylpropanoic acids, we identified compound
8 as a highly potent agonist of GPR40. Due to its combination of high
in vitro potency and selectivity, favorable pharmacokinetic profile,
and robust GPR40-mediated in vivo antidiabetic activity, compound
8 (AMG 837) was selected for clinical evaluation.
12. For reviews, see: (a) Medina, J. C.; Houze, J. B. Annu. Rep. Med. Chem. 2008, 43,
75; (b) Bharate, S. B.; Nemmani, K. V. S.; Vishwakarma, R. A. Expert Opin. Ther.
Pat. 2009, 19, 237.
13. Houze, J.; Qiu, W.; Zhang, A.; Sharma, R.; Zhu, L.; Sun, Y.; Akerman, M.; Schmitt,
M.; Wang, Y.; Liu, J.; Liu, J.; Medina, J.; Reagan, J.; Luo, J.; Tonn, G.; Zhang, J.; Lu,
J.; Chen, M.; Lopez, E.; Nguyen, K.; Li, Y.; Tang, L.; Tian, H.; Shuttleworth, S.; Lin,
D. Abstracts of Papers, 234th ACS National Meeting, Boston, MA, United States,
August 19–23, 2007, MEDI-251.
Supplementary data
14. DeWolf, W. E.; Chambers, P. A.; Southan, C.; Saunders, D.; Kruse, L. I.
Biochemistry 1989, 28, 3833.
15. Bigi, F.; Carloni, S.; Ferrari, L.; Maggi, R.; Mazzacani, A.; Sartori, G. Tetrahedron
Lett. 2001, 42, 5203.
Supplementary data associated with this article can be found, in
16. Oppolzer, W. Tetrahedron 1987, 43, 1969.
References and notes
17. Walker, S. D.; Borths, C. J.; DiVirgilio, E.; Huang, L.; Liu, P.; Morrison, H.; Sugi,
K.; Tanaka, M.; Woo, J. C. S.; Faul, M. M. Org. Process Res. Dev. 2011, 15(3), 570.
18. Woo, J. C. S.; Cui, S.; Walker, S. D.; Faul, M. M. Tetrahedron 2010, 66, 4730.
1. Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Diabetes Care 2004, 27, 1047.
2. Centers for Disease Control and Prevention. National diabetes fact sheet:
general information and National Estimates on Diabetes in the United States,
2007. Atlanta, GA: U.S. Department of Health and Human Services, Centers for
Disease Control and Prevention, 2008.
3. American Diabetes Association; Diabetes Care 2008, 31, 596.
4. Defronzo, R. A. Diabetes 2009, 58, 773.
5. Proks, P.; Reimann, F.; Green, N.; Gribble, F.; Ashcroft, F. Diabetes 2002, 51, S368.
6. Haber, E. P.; Ximenes, H. M. A.; Procópio, J.; Carvalho, C. R. O.; Curi, R.;
Carpinelli, A. R. J. Cell. Physiol. 2003, 194, 1.
19. More detailed pharmacological characterization of compound
8 will be
reported separately: Lin, D. C.-H.; Zhang, J.; Zhuang, R.; Li, F.; Nguyen, K.;
Chen, M.; Tran, T.; Lopez, E.; Lu, J. Y.-L., Li, X. N.; Tang, L.; Tonn, G. R.;
Swaminath, G.; Reagan, J. D.; Chen, J.-L; Tian, H.; Lin, Y.-J.; Houze, J. B.; Luo, J.
PLoS One 2011, 6, e27270.
20. Kim, D.; Wang, L.; Beconi, M.; Eiermann, G.; Fisher, M.; He, H.; Hickey, G.;
Kowalchick, J.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M.; Patel, R.; Petrov,
A.; Scapin, G.; Patel, S.; Roy, R.; Wu, J.; Wyvratt, M.; Zhang, B.; Zhu, L.;
Thornberry, N.; Weber, A. J. Med. Chem. 2005, 48, 141.