2856
V. Kysil et al. / Tetrahedron Letters 50 (2009) 2854–2856
4. Mondragon, L.; Orzaez, M.; Sanclimens, G.; Moure, A.; Arminan, A.; Sepulveda,
P.; Messeguer, A.; Vicent, M. J.; Perez-Paya, E. J. Med. Chem. 2008, 51, 521–529.
5. Oberhauser, B.; Scholz, D. WO 2006111371, 2006.
6. Maruoka, H.; Muto, T.; Tanaka, T.; Imajo, S.; Tomimori, Y.; Fukuda, Y.;
Nakatsuka, T. Bioorg. Med. Chem. Lett. 2007, 17, 3435–3439.
7. (a) Wattanasin, S.; Kallen, J.; Myers, S.; Guo, Q.; Sabio, M.; Ehrhardt, C.; Albert,
R.; Hommel, U.; Weckbecker, G.; Welzenbach, K.; Weitz-Schmidt, G. Bioorg.
Med. Chem. Lett. 2005, 15, 1217–1220; (b) Wattanasin, S.; Albert, R.; Ehrhardt,
C.; Roche, D.; Sabio, M.; Hommel, U.; Welzenbach, K.; Weitz-Schmidt, G. Bioorg.
Med. Chem. Lett. 2003, 13, 499–502.
8. (a) Ahmad, S.; Ngu, K. WO 2006086464, 2006; (b) Ahmad, S.; Ngu, K.; Miller, K.;
Wu, G.; Hung, C.-P.; Malmstrom, S.; Zhang, G.; Otanyi, E.; Keim, W. J.; Cullen, M.
J.; Rohrbach, K. W.; Thomas, M.; Gan, J.; Narayanan, R.; Pelleymounter, M. A.;
Robl, J. 232nd ACS Natl. Meet. (September 10–14, San Francisco), 2006, Abst.
MEDI 408.
772; (d) Krasavin, M.; Tsirulnikov, S.; Nikulnikov, M.; Kysil, V.; Ivachtchenko, A.
Tetrahedron Lett. 2008, 49, 5241–5243.
21. For representative examples of isocyanide double addition/insertion, see: (a)
Tobisu, M.; Ito, S.; Kitajima, A.; Chatani, N. Org. Lett. 2008, 10, 5223–5225; (b)
Tobisu, M.; Kitajima, A.; Yoshioka, S.; Hyodo, I.; Oshita, M.; Chatani, N. J. Am.
Chem. Soc. 2007, 129, 11431–11437; (c) Winkler, J. D.; Asselin, S. M. Org. Lett.
2006, 8, 3975–3977; (d) Nair, V.; Menon, R. S.; Deepthi, A.; Devi, B. R.; Biju, A. T.
Tetrahedron Lett. 2005, 46, 1337–1339; (e) Oshita, M.; Yamashita, K.; Tobisu,
M.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 761–766; (f) Yoshioka, S.; Oshita,
M.; Tobisu, M.; Chatani, N. Org. Lett. 2005, 7, 3697–3699; (g) Chatani, N.;
Oshita, M.; Tobisu, M.; Ishii, Y.; Murai, S. J. Am. Chem. Soc. 2003, 125, 7812–
7813; (h) Bez, G.; Zhao, C-G. Org. Lett. 2003, 5, 4991–4993; (i) Xia, Q.; Ganem, B.
Synthesis 2002, 14, 1969–1972; (j) Kozikowski, A. P.; Park, P. U. J. Org. Chem.
1984, 49, 1674–1676.
22. General procedure for the MCR of 1,3-diaminopropane, carbonyl compounds, and
isocyanides. A mixture of carbonyl compound (0.5 mmol), 1,3-diaminopropane
(0.5 mmol), and methanol (1 mL) was stirred in a 10 mL capped tube for 3 h at
9. Szewczyk,J.R.;Speake,J.D.;Sammond,D.M.;Sherrill,R.G.WO2005118573,2005.
10. Igarashi, M.; Takahashi, Y.; Shitara, T.; Nakamura, H.; Naganawa, H.; Miyake, T.;
Akamatsu, Y. J. Antibiot. 2005, 58, 327–337.
45–50 °C. Solutions of TMSCl (500
lL of 1 M, 0.5 mmol) in acetonitrile and
isocyanide (500 L of 1 M, 0.5 mmol) in methanol were added into the reaction
l
12. (a) Dvorak, C. A.; Fisher, L. E.; Green, K. L.; Stabler, R. S.; Maag, H.; Prince, A.;
Repke, D. B.; Harris, R. N. III WO 2001090081, 2001.; (b) Cefalu, J. S.; Harris, R.;
Maag, H.; Nunn, P. A.; Ford, A.; Hedge, S.; Wyllie, M. G. J. Urol. 2007, 177. Abst. 424.
13. Ramamoorthy, S. P. WO 2003091250, 2003.
14. (a) Harada, H.; Morie, T.; Kato, S. Chem. Pharm. Bull. 1998, 46, 1160–1164; (b)
Yoshida, N. J. Pharmacol. Exp. Ther. 1992, 260, 1159–1165; (c) Yoshida, N.;
Omoya, H.; Kato, S.; Ito, T. Eur. J. Pharmacol. 1992, 216, 435–440.
mixture, which was stirred at 50–60 °C for 4 h and then at 40–50 °C until
completion of the reaction (based on LC–MS/ELSD-monitoring; reactions
usually required stirring for 20–24 h). Volatiles were evaporated under
reduced pressure and the residue was treated with dry EtOAc, kept in an
ultrasonic bath until completion of precipitate formation, then centrifuged.
Precipitate was washed twice with EtOAc, acetonitrile, and Et2O with
centrifugation each time, and dried under reduced pressure. The procedure
usually provided pure monohydrochlorides of target materials.
15. For recent reviews covering IMCRs and their applications see: (a) Dömling, A.
Chem. Rev. 2006, 106, 17–89; (b) Akritopoulou-Zanze, I.; Djuric, S. W.
Heterocycles 2007, 73, 125–147; (c) Akritopoulou-Zanze, I. Curr. Opinion
Chem. Biol. 2008, 12, 324–331; (d) Hulme, C. In Multicomponent Reactions;
Zhu, J., Bienayme, H., Eds.; Wiley-VCH, Verlag GmbH & Co.KgaA: Weinheim,
2005; pp 311–341; (e) Hulme, C.; Gore, V. Current Med. Chem. 2003, 10, 51–80;
(f) Doemling, A. In Multicomponent Reactions; Zhu, J., Bienayme, H., Eds.; Wiley-
VCH, Verlag GmbH & Co.KgaA: Weinheim, 2005; pp 76–94; (g) Marcaccini, S.;
Torroba, T. In Multicomponent Reactions; Zhu, J., Bienayme, H., Eds.; Wiley-VCH,
Verlag GmbH & Co.KgaA: Weinheim, 2005; pp 33–75; (h) Zhu, J. Eur. J. Org.
Chem 2003, 1133–1144; (i) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.;
Sreekanth, A. R.; Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899–907;
(j) Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168–3210; (k) Ganem, B.
Acc. Chem. Res. 2009, 42, 463–472.
16. For examples of 1,4-diazepines synthesis employing IMCR based strategies see:
(a) Banfi, L.; Basso, A.; Guanti, G.; Kielland, N.; Repetto, C.; Riva, R. J. Org. Chem.
2007, 72, 2151–2160; (b) Shaabani, A.; Maleki, A.; Mofakham, H.; Moghimi-
Rad, J. J. Org. Chem. 2008, 73, 3925–3927; (c) Zychilinski, A. V.; Ugi, I.
Heterocycles 1998, 49, 29–32; (d) Rossen, K.; Sager, J.; DiMichele, L. M.
Tetrahedron Lett. 1997, 38, 3183–3186.
23. Data for the representative examples of synthesized compounds:
N-(tert-Butyl)-7,11-diazaspiro[5.6]dodec-11-en-12-amine hydrochloride 4a. 1H
NMR (400 MHz, DMSO-d6): d (ppm) 8.06 (br t, J = 4.5 Hz, 1H); 7.41 (br s;
1H); 3.75–3.79 (m, 2H); 2.82 (br t, J = 6.0 Hz, 1H); 2.72–2.80 (m, 2H); 1.81–
1.91 (m, 2H); 1.67–1.76 (m, 4H); 1.29–1.64 (m, 6H); 1.40 (s, 9H). 13C NMR
(100 MHz, DMSO-d6):
d (ppm) 172.9; 61.7; 54.1; 42.5; 32.3; 29.9; 28.4;
28.3; 24.1; 21.0. HRMS (ESI–TOF): calcd for C14H27N3 (M+H+) 238.2278,
found 238.2285.
N-Benzyl-7,11-diazaspiro[5.6]dodec-11-en-12-amine hydrochloride 4c. 1H NMR
(400 MHz, DMSO-d6): d (ppm) 9.41 (br t, J = 5.7 Hz, 1H); 9.06 (br t, 1H);
7.24–7.38 (m, 5H); 4.56 (d, J = 5.7 Hz, 2H); 3.50–3.57 (m, 2H); 2.87 (br t,
J = 6.1 Hz, 1H); 2.76–2.83 (m, 2H); 1.40–1.92 (m, 11H); 1.21–1.33 (m, 1H).
13C NMR (100 MHz, DMSO-d6): d (ppm) 173.9; 136.2; 128.9; 127.9; 127.5;
61.1; 44.8; 41.9; 32.8; 30.0; 24.6; 20.9. HRMS (ESI–TOF): calcd for C17H25N3
(M+H+) 272.2121, found 272.2125.
N-Cyclohexyl-3-thia-7,11-diazaspiro[5.6]dodec-11-en-12-amine
hydrochloride
15a. 1H NMR (400 MHz, DMSO-d6): d (ppm) 9.22 (br s, 1H); 8.22 (br d,
J = 8.0 Hz, 1H); 3.70–3.75 (m, 1H); 3.55–3.63 (m, 2H); 2.97–3.08 (m, 3H);
2.74–2.82 (m, 2H); 2.25–2.34 (m, 2H); 2.07–2.17 (m, 2H); 1.96–2.04 (m,
2H); 1.52–1.79 (m, 7H); 1.23–1.41 (m, 4H); 0.98–1.11 (m, 1H). 13C NMR
(100 MHz, DMSO-d6): d (ppm) 171.3; 60.5; 51.7; 41.1; 38.9; 33.2; 31.3; 29.7;
25.2; 24.8; 22.3. HRMS (ESI-TOF): calcd for C15H27N3S (M+H+) 282.1998,
found 282.1995.
17. Kysil, V.; Tkachenko, S.; Khvat, A.; Williams, C.; Tsirulnikov, S.; Churakova, M.;
Ivachtchenko, A. Tetrahedron Lett. 2007, 48, 6239–6244.
18. Besides our report,17 see also: (a) Keung, W.; Bakir, F.; Patron, A. P.; Rogers, D.;
Priest, Ch. D.; Darmohusodo, V. Tetrahedron Lett. 2004, 45, 733–737; (b)
Carballares, S.; Espinosa, J. F. Org. Lett. 2005, 7, 2329–2331; (c) Illgen, K.;
Nerdinger, S.; Behnke, D.; Friedrich, C. Org. Lett. 2005, 7, 2517–2518; (d)
tert-Butyl 12-(cyclohexylamino)-3,7,11-triazaspiro-[5.6]dodec-11-ene-3-carbox-
ylate hydrochloride 15b. 1H NMR (400 MHz, DMSO-d6): d (ppm) 9.24 (br m,
1H); 8.01 (br d, J = 7.8 Hz, 1H); 3.64–3.85 (m, 3H); 3.57–3.63 (m, 2H); 2.88–
3.10 (m, 3H); 2.75–2.85 (m, 2H); 1.50–1.94 (m, 11H); 1.37 (s, 9H); 1.18–1.36
(m, 4H); 0.98–1.11 (m, 1H). 13C NMR (100 MHz, DMSO-d6): d (ppm) 171.1;
154.2; 79.2; 59.4; 51.8; 41.6; 32.1; 31.3; 29.9; 28.6; 25.2; 24.8. HRMS (ESI–
TOF): calcd for C20H36N4O2 (M+H+) 365.2911, found 365.2913.
N-Cyclohexyl-2-(1-methyl-1H-pyrrol-2-yl)-2,5,6,7-tetrahydro-1H-1,4-diazepin-3-
amine hydrochloride 16b. 1H NMR (400 MHz, DMSO-d6): d (ppm) 9.58 (br s,
1H); 9.31 (br d, J = 6.3 Hz, 1H); 6.78–6.80 (m, 1H); 5.93–5.96 (m, 1H); 5.83–
5.85 (m, 1H); 5.30 (d, J = 2.5 Hz, 1H); 3.64–3.78 (m, 1H); 3.60 (s, 3H); 3.42–
3.58 (m, 2H); 3.23–3.31 (m, 1H); 2.77–2.87 (m, 1H); 2.32–2.43 (m, 1H);
1.79–1.89 (m, 2H); 1.47–1.73 (m, 5H); 1.24–1.38 (m, 3H); 1.04–1.17 (m,
2H). 13C NMR (100 MHz, DMSO-d6): d (ppm) 167.5; 124.7; 124.6; 109.3;
106.9; 57.4; 51.1; 44.2; 43.3; 34.5; 31.5; 31.2; 30.6; 25.2; 24.5; 24.4. HRMS
(ESI–TOF): calcd for C16H26N4 (M+H+) 275.2230, found 275.2231.
ˇ
Franckevicius, V.; Longbottom, D. A.; Turner, R. M.; Ley, S. V. Synthesis 2006, 19,
3215–3223; (e) Shaabani, A.; Maleki, A.; Moghimi-Rad, J. J. Org. Chem. 2007, 72,
6309–6311; (f) Krasavin, M.; Parchinsky, V. Synlett 2008, 645–648; (g)
Shaabani, A.; Maleki, A.; Mofakham, H.; Khavasi, H. R. J. Comb. Chem. 2008,
10, 323–326; (h) Heravi, M. M.; Baghernejad, B.; Oskooie, H. A. Tetrahedron Lett.
2009, 50, 767–769; (i) Krasavin, M.; Shkavrov, S.; Parchinsky, V.; Bukhryakov,
K. J. Org. Chem. 2009, 74, 2627–2629.
19. For the most recent comprehensive review concerning less conventional versus
‘classic’ Ugi IMCR interactions between isocyanides and iminium species
following by trapping (including intramolecular) of nitrilium cation by N-, C-,
O-, and S-nucleophiles see: El Kaim, L.; Grimaud, L. Tetrahedron 2009, 65,
2153–2171.
20. For selected examples of silicon Lewis acid catalyzed reactions see: (a) Xia, Q.;
Ganem, B. Org. Lett. 2002, 4, 1631–1634; (b) Denmark, S. E.; Fan, Y. J. Org. Chem.
2005, 70, 9667–9776; (c) Dilman, A. D.; Ioffe, S. L. Chem. Rev. 2003, 103, 733–