ACS Medicinal Chemistry Letters
Page 6 of 6
6 Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic Structure of Acetylcholinesterase from Torpedo californica:
a Prototypic Acetylcholineꢀbinding Protein. Science 1991, 253, 872ꢀ879.
7 Jokanovic, M.; Prostran, M. Pyridinium oximes as cholinesterase reactivators. Structureꢀactivity Relationship and Efficacy in the Treatment of Poisoning
with Organophosphorus Compounds. Curr. Med. Chem. 2009, 16, 2177ꢀ2188.
8 Worek, F.; Thiermann, H.; Szinicz, L.; Eyer, P. Kinetic Analysis of Interactions between Human Acetylcholinesterase, Structurally Different Organoꢀ
phosphorus Compounds and Oximes. Biochem. Pharmacol. 2004, 68, 2237ꢀ2248.
9 Worek, F., Szinicz, L., Eyer, P., Thiermann, H. Evaluation of Oxime Efficacy in Nerve Agent Poisoning: Development of a KineticꢀBased Dynamic Modꢀ
el. Toxicol. Appl. Pharmacol. 2005, 209, 193ꢀ202.
1
2
3
4
5
6
7
10 Worek, F.; Eyer, P.; Aurbeck, N.; Szinicz, L.; Thiermann, H. Recent Advances in Evaluation of Oxime Efficacy in Nerve Agent Poisoning by in vitro
Analysis. Toxicol. Appl. Pharm. 2007, 219, 226ꢀ234.
11. Gorecki, L.; Korabecny, J.; Musilek, K.; Malinak, D.; Nepovimova, E.; Dolezal, R.; Jun, D.; Soukup, O.; Kuca, K. SAR study to find optimal cholinesꢀ
terase reactivator against organophosphorous nerve agents and pesticides. Arch Toxicol. 2016, 90, 2831ꢀ2859.
12 Michel, H.O.; Hackley, B.E. Jr.; Berkowitz, L.; List, G.; Hackley, E.B.; Gillilan, W.; Pankau, M. Ageing and Dealkylation of Soman (Pinacolylmeꢀ
thylphosphonofluoridate)ꢀinactivated Eel Cholinesterase. Arch. Biochem. Biophys. 1967, 121, 29ꢀ34.
13 Millard, C.B.; Kryger, G.; Ordentlich, A.; Greenblatt, H.M.; Harel, M.; Raves, M.L.; Segall, Y.; Barak, D.; Shafferman, A.; Silman, I.; Sussman, J.L.
Crystal Structures of Aged Phosphonylated Acetylcholinesterase: Nerve Agent Reaction Products at the Atomic Level. Biochem. 1999, 38, 7032ꢀ7039.
14 Wang, J.; Gu, J.; Leszczynski, J. Phosphonylation Mechanisms of Sarin and Acetylcholinesterase:ꢁ A Model DFT Study. J. Phys. Chem. B 2006, 110,
7567ꢀ7573.
15 Sidell, F.R.; Groff, W.A. The Reactivatibility of Cholinesterase Inhibited by VX and Sarin in Man. Toxicol. Appl. Pharm. 1974, 27, 241ꢀ252.
16 Mager, P.P. Multidimensional Pharmacochemistry. Academic Press: San Diego, 1984; pp 52ꢀ53.
17 Barak, D.; Ordentlich, A.; Segall, Y.; Velan, B.; Benschop, H.P.; De Jong, L.P.A.; Shafferman, A. CarbocationꢀMediated Processes in Biocatalysts.
Contribution of Aromatic Moieties. J. Am. Chem. Soc. 1997, 119, 3157ꢀ3158.
18 Zhuang, Q.; Young, A.; Callam, C. S.; McElroy, C. A.; Ekici, Ö. D.; Yoder, R. J.; Hadad, C. M. Efforts toward Treatments against Aging of Organoꢀ
phosphorusꢀinhibited Acetylcholinesterase. Ann. NY Acad. Sci. 2016, 1374, 94ꢀ104.
19 Blumbergs, P.; Ash, A.B.; Daniher, F.A.; Stevens, C.L.; Michel, H.O.; Hackley, B.E. Jr.; Epstein, J. Alkylating Agents Containing a Quaternary Nitrogen
Group. J. Org. Chem. 1969, 34, 4065ꢀ4070.
20 Ash, A.B.; Blumbergs, P.; Stevens, C.L.; Michel, H.O.; Hackley, B.E.Jr.; Epstein, J. Relative Nucleophilicity. Methylation of Anions in Aqueous Media.
J. Org. Chem. 1969, 34, 4070ꢀ4072.
21 Steinberg, G.M.; Lieske, C.N.; Boldt, R. Model Studies for the Reactivation of Aged Phosphonylated Acetylcholinesterase. Use of Alkylating Agents
Containing Nucleophilic Groups. J. Med. Chem. 1970, 13, 435ꢀ446.
22 Zhou, Q.; Turnbull, K.D. Quinone Methide Phosphodiester Alkylations under Aqueous Conditions. J. Org. Chem. 2001, 66, 7072ꢀ7077.
23 Bakke, B.A.; McIntosh, M.C.; Turnbull, K.D. Improved Alkylation and Product Stability in Phosphotriester Formation through Quinone Methide Reacꢀ
tions with Dialkyl Phosphates. J. Org. Chem. 2005, 70, 4338ꢀ4345.
24 Freccero, M. Quinone Methides as Alkylating and Crossꢀlinking Agents. MiniꢀRev. Org. Chem. 2004, 1, 403ꢀ415.
25 Weinert, E.E.; Dondi, R.; ColloredoꢀMelz, S.; Frankenfield, K.N.; Mitchell, C.H.; Freccero, M.; Rokita, S.E. Substituents on Quinone Methides Strongly
Modulate Formation and Stability of Their Nucleophilic Adducts. J. Am. Chem. Soc. 2006, 128, 11940ꢀ11947.
26 Grove, S. J.; Kaur, J.; Muir, A.W.; Pow, E.; Tarver, G.J.; Zhang, M.Q. Oxyaniliniums as Acetylcholinesterase Inhibitors for the Reversal of Neuromusꢀ
cular Block. Bioorg. Med. Chem. Lett. 2002, 12, 193ꢀ196.
27 Shaikh, A.k.; Cobb, A.J.A.; Varvounis, G. Mild and Rapid Method for the Generation of orthoꢀ(Naphtho)quinone Methide Intermediates. Org. Lett.
2012, 14, 584ꢀ587.
28 Bolton, J. L.; Comeau, E.; Vukomanovic, V. The Influence of 4ꢀAlkyl Substituents on the Formation and Reactivity of 2ꢀMethoxyꢀQuinone Methides:
Evidence that Extended PiꢀConjugation Dramatically Stabilizes the Quinone Methide Formed from Eugenol. Chem. Biol. Interact. 1995, 95, 279ꢀ290.
29 Modica, E..; Zanaletti, R.; Freccero, M.; Mella, M. Alkylation of Amino Acids and Glutathione in Water by oꢀQuinone Methide. Reactivity and Selectivꢀ
ity. J. Org. Chem. 2001, 66, 41ꢀ52.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
30 Beck, J.M.; Hadad, C.M. Reaction Profiles of the Interaction between Sarin and Acetylcholinesterase and the S203C Mutant: Model Nucleophiles and
QM/MM Potential Energy Surfaces. ChemꢀBiol Interac. 2010, 187, 220ꢀ224.
31 Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.;
Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta,
J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.;
Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian,
Inc., Wallingford CT, 2009.
32 Lee, C.; Yang, W.; Parr, R. G. Development of the ColleꢀSalvetti Correlationꢀenergy Formula into a Functional of the Electron Density. Phys. Rev. B
1988, 37, 785ꢀ789.
33 Becke, A. D. DensityꢀFunctional Thermochemistry. III. the Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648ꢀ5652.
34 Ellman, G.L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70ꢀ77.
35 Copeland, R. A. Evaluation of Enzyme Inhibitors in Drug Discovery, 2nd ed.; WileyꢀInterscience: Hoboken, 2013; pp 57ꢀ121.
36 Amitai, G.; Adani, R.; Yacov, G.; Yishay, S.; Teitlboim, S.; Tveria, L.; Limanovich, O.; Kushnir, M.; Meshulam, H. Asymmetric Fluorogenic Organoꢀ
phosphates for the Development of Active Organophosphate Hydrolases with Reversed Stereoselectivity. Toxicol. 2007, 233, 187ꢀ198.
37 Heilbronn, E. Action of Fluoride on Cholinesterase—II: in vitro Reactivation of Cholinesterases Inhibited by Organophosphorous Compounds. Biochem.
Pharmacol. 1965, 14, 1363ꢀ1373.
38 Hagstrom, D.; Hirokawa, H.; Zhang, L.; Radic, Z.; Taylor, P.; Collins, E. S. Planarian Cholinesterase: in vitro Characterization of an Evolutionarily
Ancient Enzyme to Study Organophosphorus Pesticide Toxicity and Reactivation. Arch. Toxicol. 2016, published online December 18, 2016;
DOI:10.1007/s00204ꢀ016ꢀ1908ꢀ3.
6
ACS Paragon Plus Environment