Scheme 1
Table 1. Temperature and Base Effects of the Reaction of 1a
T1
T2
(E)-2aa (Z)-3aa
entry
(°C)/t1(h)
base
Et3N
Et3N
Et3N
Et3N
EtN(Pr-i)2
pyridine
(°C)/t2(h)
(%)
(%)
1
2
3
4
5
6
-78 °C-rt/4
rt/2
reflux/2
reflux/2
reflux/2
reflux/2
rt/1
rt/3
reflux/3
rt/5
rt/3
68
66
64
87
71
0
7
5
6
<0.5
8
25
a NMR yield. b 16% of 1a was recovered. c 15% of 1a was recovered.
rt/21
a NMR yield using 1,3,5-trimethylbenzene as the internal standard.
product in 68% yield together with 7% yield of (Z)-3a
(Scheme 1). In order to further optimize the reaction
conditions for the selective formation of (E)-2a or (Z)-3a,
temperature and base effects were tested. Some of the most
typical results are summarized in Table 1. 3-(Methoxycar-
bonyl)-1,2-nonadien-4-ol 1a was first treated with oxalyl
chloride under reflux, which was followed by the elimination
at rt using Et3N as the base to afford the product (E)-2a in
the highest yield with the best selectivity (compare entries
1-4, Table 1). Among the bases screened, EtN(Pr-i)2
demonstrated a poor selectivity affording (E)-2a and (Z)-3a
in 71% and 8% yields, respectively (entry 5, Table 1); when
(2) For reports on the synthesis of 1,3-dienes, see: (a) Trost, B. M.;
Fortunak, J. M. J. Am. Chem. Soc. 1980, 102, 2841. (b) Tsuboi, S.; Masuda,
T.; Takeda, A. J. Org. Chem. 1982, 47, 4478. (c) Mandai, T.; Yanagi, T.;
Araki, K.; Morisaki, Y.; Kawada, M.; Otera, J. J. Am. Chem. Soc. 1984,
106, 3670. (d) Trost, B. M.; Brandi, A. J. Org. Chem. 1984, 49, 4811. (e)
Cacchi, S.; Morera, E.; Ortar, G. Tetrahedron Lett. 1984, 25, 2271. (f)
Mandai, T.; Moriyama, T.; Tsujimoto, K.; Kawada, M.; Otera, J. Tetrahe-
dron Lett. 1986, 27, 603. (g) Trost, B. M.; Schmidt, T. J. Am. Chem. Soc.
1988, 110, 2301. (h) Hettrick, C. M.; Kling, J. K.; Scott, W. J. J. Org.
Chem. 1991, 56, 1489. (i) Mitsudo, T.-A.; Zhang, S.-W.; Nagao, M.;
Watanabe, Y. J. Chem. Soc., Chem. Commun. 1991, 598. (j) Guo, C.; Lu,
X. Tetrahedron Lett. 1992, 33, 3659. (k) Trost, B. M.; Kazmaier, U. J. Am.
Chem. Soc. 1992, 114, 7933. (l) Guo, C.; Lu, X. J. Chem. Soc., Perkin
Trans. 1 1993, 1921. (m) Rychnovsky, S. D.; Kim, J. J. Org. Chem. 1994,
59, 2659. (n) Kitahara, T.; Matsuoka, T.; Kiyota, H.; Warita, Y.; Kurata,
H.; Horiguchi, A.; Mori, K. Synthesis 1994, 692. (o) Bernabeu, M. C.;
Chinchilla, R.; Na´jera, C. Tetrahedron Lett. 1995, 36, 3901. (p) Kinoshita,
A.; Sakakibara, N.; Mori, M. J. Am. Chem. Soc. 1997, 119, 12388. (q) Qi,
X.; Montgomery, J. J. Org. Chem. 1999, 64, 9310. (r) Yao, Q. Org. Lett.
2001, 3, 2069. (s) Su, M.; Kang, Y.; Yu, W.; Hua, Z.; Jin, Z. Org. Lett.
2002, 4, 691. (t) Wang, Y.; West, F. G. Synthesis 2002, 99. (u) Paih, J. L.;
Monnier, F.; De´rien, S.; Dixneuf, P. H.; Clot, E.; Eisenstein, O. J. Am.
Chem. Soc. 2003, 125, 11964. (v) Fu, C.; Ma, S. Org. Lett. 2005, 7, 1707.
(w) Cella, R.; Orfa˜o, A. T. G.; Stefani, H. A. Tetrahedron Lett. 2006, 47,
5075. (x) Tayama, E.; Sugai, S. Tetrahedron Lett. 2007, 48, 6163. (y) Clark,
D. A.; Basile, B. S.; Karnofel, W. S.; Diver, S. T. Org. Lett. 2008, 10,
4927. (z) Li, G.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 3740.
(aa) Mundal, D. A.; Lutz, K. E.; Thomson, R. J. Org. Lett. 2009, 11, 465.
(bb) Dudnik, A. S.; Schwier, T.; Gevorgyan, V. J. Organomet. Chem. 2009,
694, 482.
(5) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975,
16, 4467. (b) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (c)
Alami, M.; Ferri, F.; Linstrumelle, G. Tetrahedron Lett. 1993, 34, 6403.
(d) Lemay, A. B.; Vulic, K. S.; Ogilvie, W. W. J. Org. Chem. 2006, 71,
3615. (e) Hatakeyama, T.; Yoshimoto, Y.; Gabriel, T.; Nakamura, M. Org.
Lett. 2008, 10, 5341.
(6) (a) Kang, B.; Kim, D.; Do, Y.; Chang, S. Org. Lett. 2003, 5, 3041.
(b) Kang, B.; Lee, J. M.; Kwak, J.; Lee, Y. S.; Chang, S. J. Org. Chem.
2004, 69, 7661. (c) Hansen, E. C.; Lee, D. Org. Lett. 2004, 6, 2035.
(7) Gibson, A. W.; Humphrey, G. R.; Kennedy, D. J.; Wright, S. H. B.
Synthesis 1991, 414.
(8) Negishi, E.; Yoshida, T.; Abramovitch, A.; Lew, G.; Williams, R. M.
Tetrahedron 1991, 47, 343.
(9) (a) Rao, W.; Zhang, X.; Sze, E. M. L.; Chan, P. W. H. J. Org. Chem.
2009, 74, 1740. (b) Sim, S. H.; Park, H.-J.; Lee, S. I.; Chung, Y. K. Org.
Lett. 2008, 10, 433. (c) Yamauchi, Y.; Onodera, G.; Sakata, K.; Yuki, M.;
Miyake, Y.; Uemura, S.; Nishibayashi, Y. J. Am. Chem. Soc. 2007, 129,
5175. (d) Ikeda, S.; Sato, Y. J. Am. Chem. Soc. 1994, 116, 5975.
(10) For reports on the synthesis of 1,3-dienes from 2,3-allenols or their
derivatives, see: (a) Pornet, J. Tetrahedron Lett. 1981, 22, 453. (b) Kleijn,
H.; Wertmijze, H.; Meijer, J.; Vermeer, P. Recl. TraV. Chim. Pays-Bas 1983,
102, 378. (c) Wang, K. K.; Nikam, S. S.; Marcano, M. M. Tetrahedron
Lett. 1986, 27, 1123. (d) Djahanbini, D.; Cazes, B.; Gore, J. Tetrahedron
1987, 43, 3441. (e) Nokami, J.; Maihara, A.; Tsuji, J. Tetrahedron Lett.
1990, 31, 5629. (f) Friesen, R. W.; Kolaczewska, A. E.; Khazanovich, N.
Tetrahedron Lett. 1992, 33, 6715. (g) Imada, Y.; Vasapollo, G.; Alper, H.
J. Org. Chem. 1996, 61, 7982. (h) Horva´th, A.; Ba¨ckvall, J.-E. J. Org.
Chem. 2001, 66, 8120. (i) Shen, Q.; Hammond, G. B. Org. Lett. 2001, 3,
2213. (j) Ma, S.; Wang, G. Tetrahedron Lett. 2002, 43, 5723. (k) Cho,
Y. S.; Jun, B. K.; Pae, A. N.; Cha, J. H.; Koh, H. Y.; Chang, M. H.; Han,
S.-Y. Synthesis 2004, 2620. (l) Alcaide, B.; Almendros, P.; Aragoncillo,
M.; Redondo, M. C. Eur. J. Org. Chem. 2005, 98. (m) Ma, S.; Gu, Z. J. Am.
Chem. Soc. 2005, 127, 6182. (n) Alcaide, B.; Almendros, P.; Mart´ınez del
Campo, T. Angew. Chem., Int. Ed. 2006, 45, 4501. (o) Deng, Y.; Li, J.;
Ma, S. Chem.sEur. J. 2008, 14, 4263. (p) Deng, Y.; Yu, Y.; Ma, S. J.
Org. Chem. 2008, 73, 585. (q) Alcaide, B.; Almendros, P.; Mart´ınez del
Campo, T.; Carrascosa, R. Chem. Asian. J. 2008, 3, 1140.
(3) For some selected recent references on the reactions of conjugated
enynes, see: (a) Yu, X.; Ren, H.; Xiao, Y.; Zhang, J. Chem.sEur. J. 2008,
14, 8481. (b) Dunetz, J. R.; Danheiser, R. L. J. Am. Chem. Soc. 2005, 127,
5776. (c) Hayes, M. E.; Shinokubo, H.; Danheiser, R. L. Org. Lett. 2005,
7, 3917. (d) Nakao, Y.; Hirata, Y.; Ishihara, S.; Oda, S.; Yukawa, T.;
Shirakawa, E.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 15650. (e) Wender,
P. A.; Gamber, G. G.; Scanio, M. J. C. Angew. Chem., Int. Ed. 2001, 40,
3895. (f) Saito, S.; Tanaka, T.; Koizumi, T.; Tsuboya, N.; Itagaki, H.;
Kawasaki, T.; Endo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 1810.
(g) Saito, S.; Ohmori, O.; Yamamoto, Y. Org. Lett. 2000, 2, 3853.
(4) (a) Wasserman, A. Diels-Alder Reactions; Elsevier: Amsterdam,
1965. (b) Wallweben, H. Diels-Alder Reaction; Thieme: Stuttgart, 1972.
(c) Fringuelli, F.; Taticchi, A. Dienes in the Diels-Alder Reaction; John
Wiley: New York, 1990. (d) Oppolzer, W. In ComprehensiVe Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991;
Vol. 5, Chapter 4.1, pp 315-400. (e) Roush, W. R. In ComprehensiVe
Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford,
1991; Vol. 5, Chapter 4.4, pp 513-550. (f) Mehta, G.; Rao, S. P. In The
Chemistry of Dienes and Polyenes; Rappoport, Z., Ed.; John Wiley:
Chichester, 1997; Chapter 9, pp 361-467. (g) Fringuelli, F.; Taticchi, A.
The Diels-Alder Reaction: Selected Practical Methods; John Wiley:
Chichester, 2002.
(11) Choe, Y.; Lee, P. H. Org. Lett. 2009, 11, 1445.
(12) (a) Deng, Y.; Jin, X.; Ma, S. J. Org. Chem. 2007, 72, 5901. (b)
Winkler, J. D.; Quinn, K. J.; MacKinnon, C. H.; Hiscock, S. D.; McLaughlin,
E. C. Org. Lett. 2003, 5, 1805.
(13) (a) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651. For the
oxidation of 2,3-allenols to corresponding 1,2-allenic ketones, see: (b) Ma,
S.; Yu, S.; Yin, S. J. Org. Chem. 2003, 68, 8996.
2170
Org. Lett., Vol. 11, No. 10, 2009