organic compounds
Table 2
Hydrogen-bond geometry (A, ).
Experimental
ꢁ
˚
2,3-Dicyanonaphthalene (99% purity) and cyanoguanidine (99%
purity) were purchased from Sigma–Aldrich. They were mixed
together in a 1:1 molar ratio and the mixture was pressed into pellets.
The pellets were inserted into an evacuated glass ampoule and
annealed in the temperature gradient 523–503 K for 6 h. Crystals of
3-(4,6-diamino-1,3,5-triazin-2-yl)-2-naphthonitrile, (I), were formed
in the low-temperature zone during migration from the high-
temperature zone at which the compound was formed (Janczak &
Kubiak, 2005a,b). Elemental analysis found: C 64.21, N 32.00, H
3.79%; calculated for C14H10N6: C 64.11, N 32.05, H 3.84%.
D—Hꢀ ꢀ ꢀA
D—H
Hꢀ ꢀ ꢀA
Dꢀ ꢀ ꢀA
D—Hꢀ ꢀ ꢀA
N4—H4Aꢀ ꢀ ꢀN22
N5—H5Bꢀ ꢀ ꢀN23i
N24—H24Aꢀ ꢀ ꢀN2
N24—H24Bꢀ ꢀ ꢀN26ii
N25—H25Bꢀ ꢀ ꢀN3iii
0.86
0.86
0.86
0.86
0.86
2.32
2.30
2.16
2.30
2.28
3.171 (2)
3.132 (2)
2.984 (2)
3.078 (3)
3.096 (2)
172
163
161
150
158
1
2
1
2
1
2
Symmetry codes: (i) x; ꢄy; z ꢄ ; (ii) ꢄx; y; ꢄz þ ; (iii) x; ꢄy; z þ .
Diffraction, 2006); program(s) used to solve structure: SHELXS97
(Sheldrick, 2008); program(s) used to refine structure: SHELXL97
(Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg &
Putz, 2006); software used to prepare material for publication:
SHELXL97.
Crystal data
3
˚
C14H10N6
Mr = 262.28
V = 4919 (2) A
Z = 16
Monoclinic, C2=c
Mo Kꢂ radiation
ꢃ = 0.09 mmꢄ1
T = 295 (2) K
0.32 ꢆ 0.26 ꢆ 0.18 mm
˚
a = 35.798 (7) A
This work was supported financially by the Ministry of
Science and Information Society Technologies (project No.
3T09A12128).
˚
b = 7.3190 (10) A
˚
c = 21.459 (4) A
ꢁ = 118.96 (3)ꢁ
Data collection
Supplementary data for this paper are available from the IUCr electronic
archives (Reference: GD3192). Services for accessing these data are
described at the back of the journal.
Kuma KM-4 diffractometer with a
CCD area-detector
Absorption correction: analytical,
face-indexed (SHELXTL;
Sheldrick, 2008)
27666 measured reflections
5875 independent reflections
3357 reflections with I > 2ꢄ(I)
Rint = 0.034
References
Tmin = 0.974, Tmax = 0.981
Brandenburg, K. & Putz, H. (2006). DIAMOND. Release 3.0. Crystal Impact
GbR, Bonn, Germany.
Refinement
Cozzi, F., Annunziata, R., Benagalia, M., Cinquini, M., Raimoudi, L.,
Baldridge, K. K. & Siegel, J. S. (2003). Org. Biomol. Chem. 1, 157–162.
Desiraju, G. R. (1990). Crystal Engineering. The Design of Organic Solids.
Amsterdam: Elsevier Science Publishers.
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.
Frisch, J. M. et al. (1998). GAUSSIAN98. Revision A3. Gaussian Inc.,
Pittsburgh, Pennsylvania, USA.
Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.
Janczak, J. & Kubiak, R. (2005a). J. Mol. Struct. 749, 60–69.
Janczak, J. & Kubiak, R. (2005b). J. Mol. Struct. 751, 74–84.
R[F2 > 2ꢄ(F2)] = 0.045
wR(F2) = 0.071
S = 1.04
362 parameters
H-atom parameteꢄrs3 constrained
˚
Áꢅmax = 0.23 e A
ꢄ3
˚
5875 reflections
Áꢅmin = ꢄ0.24 e A
The H atoms were treated as riding in geometrically idealized
˚
˚
positions, with C—H = 0.93 A and N—H = 0.86 A, and with Uiso(H) =
1.2Ueq(C,N).
´
Janczak, J. & Perpetuo, G. J. (2001). Acta Cryst. C57, 1431–1433.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford
´
Janczak, J. & Perpetuo, G. J. (2002). Acta Cryst. C58, o455–o459.
´
Janczak, J. & Perpetuo, G. J. (2003). Acta Cryst. C59, o349–o352.
´
Janczak, J. & Perpetuo, G. J. (2004). Acta Cryst. C60, o211–o214.
´
Janczak, J. & Perpetuo, G. J. (2008). Acta Cryst. C64, o91–o94.
Table 1
Selected geometric parameters (A, ).
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
Kobayashi, Y. & Saigo, K. (2005). J. Am. Chem. Soc. 127, 15054–15060.
Moulton, B. & Zaworotko, M. (2001). Chem. Rev. 101, 1629–1658.
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions
171.31.8. Oxford Diffraction Poland, Wrocław, Poland.
ꢁ
˚
N6—C11
C2—C3
1.136 (3)
1.425 (3)
1.443 (3)
1.488 (2)
N26—C211
C22—C211
C23—C212
1.141 (2)
1.444 (2)
1.488 (2)
C2—C11
C3—C12
Pauling, L. (1967). The Chemical Bond: A Brief Introduction to Modern
Structural Chemistry, ch. 3. Ithaca: Cornell University Press.
´
Perpetuo, G. J. & Janczak, J. (2003). Pol. J. Chem. 77, 1323–1337.
C12—N1—C13
C14—N2—C13
C12—N3—C14
N6—C11—C2
N1—C12—N3
N2—C13—N1
N2—C14—N3
114.13 (15)
114.67 (15)
113.74 (15)
173.9 (2)
126.72 (16)
125.04 (16)
125.60 (16)
C212—N21—C213
C214—N22—C213
C212—N23—C214
N26—C211—C22
N21—C212—N23
N22—C213—N21
N22—C214—N23
115.00 (15)
114.09 (15)
113.13 (14)
167.7 (2)
126.70 (16)
124.95 (15)
126.13 (16)
´
Perpetuo, G. J. & Janczak, J. (2005). Acta Cryst. E61, o287–o289.
´
Perpetuo, G. J. & Janczak, J. (2007). Acta Cryst. C63, o271–o273.
Seiter, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Whitesides, G. M., Simanek, E. E., Mathias, J. P., Seto, C. T., Chin, D. N.,
Mammen, M. & Gordon, D. M. (1995). Acc. Chem. Res. 28, 37–44.
Wuest, D. (2005). Chem. Commun. pp. 5830–5837.
ꢅ
Acta Cryst. (2008). C64, o159–o161
Jan Janczak C14H10N6 o161