410
H. P. Hemantha et al.
LETTER
(18) Sureshbabu, V. V.; Chennakrishnareddy, G.; Narendra, N.
Tetrahedron Lett. 2008, 49, 1408.
(19) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N.;
Smith, C. D.; Tierney, J. P. Org. Biomol. Chem. 2008, 6,
1577.
(20) (a) Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.
Chem. Commun. 1999, 215. (b) Lal, G. S.; Pez, G. P.;
Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. J. Org. Chem.
1999, 64, 7048.
(21) Singh, R. P.; Shreeve, J. M. Synthesis 2002, 2561.
(22) Singh, R. P.; Chakraborty, D.; Shreeve, J. M. J. Fluorine
Chem. 2002, 111, 153.
184 °C. 1H NMR (300 MHz, DMSO): d = 0.92 (12 H, m),
1.32–1.85 (4 H, m), 3.10 (2 H, s), 3.70–3.80 (2 H, m), 4.20
(1 H, t), 4.42 (2 H, m), 5.10 (1 H, d), 6.60–6.70 (2 H, m),
7.20–7.85 (13 H, m). 13C NMR (200 MHz, DMSO): d =
18.5, 19.5, 22.0, 23.1, 24.5, 29.2, 40.3, 47.2, 59.0, 66.6,
120.0, 125.1, 126.5, 127.0, 127.2, 128.4, 129.3, 137.6,
141.2, 144.0, 155.4, 156.8, 176.4. HRMS: m/z calcd for
C33H39N3NaO5: 580.2787; found: 580.2774 [M + Na].
Z-Gly-y(NH-CO-NH)-Val-OMe (2d): Off-white solid, mp
159 °C. 1H NMR (300 MHz, DMSO): d = 0.93 (6 H, d), 3.14
(1 H, m), 3.58 (3 H, s), 4.51 (3 H, m), 5.30 (2 H, s), 6.10 (2
H, m), 6.48 (1 H, t), 7.20–7.40 (5 H, m). 13C NMR (200
MHz, DMSO): d = 17.1, 31.1, 52.1, 56.2, 57.8, 65.4, 127.1,
127.2, 128.5, 141.2, 156.8, 157.5, 171.6. HRMS: m/z calcd
for C16H23N3NaO5: 360.1535; found: 360.1513 [M + Na].
Boc-Glu(OBzl)-y(NH-CO-NH)-Ile-OMe (2e): solid, mp
138 °C. 1H NMR (300 MHz, DMSO): d = 0.91 (6 H, d),
1.30–1.45 (11 H, s), 1.65 (1 H, m), 2.55 (2 H, m), 2.90 (2 H,
m), 3.65 (3 H, s), 3.80–3.90 (2 H, m), 5.15 (2 H, s), 5.30 (1
(23) Kangani, C. O.; Day, B. W.; Kelley, D. E. Tetrahedron Lett.
2008, 49, 914.
(24) (a) Kangani, C. O.; Day, B. W.; Kelley, D. E. Tetrahedron
Lett. 2007, 48, 5933. (b) Kangani, C. O.; Kelley, D. E.
Tetrahedron Lett. 2005, 46, 8917.
(25) Tunoori, A. R.; White, J. M.; Georg, G. I. Org Lett. 2000, 2,
4091.
(26) Carpino, L. A.; Mansour, E. M. E.; El-Fahan, A. J. Org.
Chem. 1993, 58, 4162.
H, d), 6.35 (1 H, d), 6.50 (1 H, d), 7.30–7.40 (5 H, m). 13
C
NMR (200 MHz, DMSO): d = 22.1, 23.1, 24.7, 28.6, 37.9,
39.7, 419, 50.9, 51.7, 61.9, 63.1, 78.7, 126.7, 127.6, 128.9,
137.7, 155.3, 156.8, 157.5, 178.1. HRMS: m/z calcd for
C24H37N3NaO7: 502.2529; found: 502.2543 [M + Na].
Fmoc-Val-y(NH-CO-NH)-2,3,4,6-tetra-O-acetyl-b-D-
glucopyranoside (3a): white solid, mp 179 °C. 1H NMR
(300 MHz, DMSO): d = 0.93 (6 H, d), 1.95 (12 H, s), 3.12 (1
H, m), 4.30–4.45 (3 H, m), 4.67 (2 H, d), 4.90–5.20 (5 H, m),
5.40 (1 H, m), 5.70 (2 H, br), 6.90–7.50 (8 H, m). 13C NMR
(200 MHz, DMSO): d = 15.1, 20.8, 21.1, 33.2, 47.5, 59.7,
67.8, 68.0, 69.1, 69.2, 73.0, 74.8, 81.0, 126.8, 128.2, 128.4,
128.6, 141.3, 142.5, 156.0, 158.1, 170.7. HRMS: m/z calcd
for C34H41N3NaO12: 706.2588; found: 706.2601 [M + Na].
(1,2),(3,4)-Diacetylgalactopyranosyl-6-NH-CO-NH-Phe-
OMe (4b): solid, mp 104 °C. 1H NMR (300 MHz, DMSO):
d = 1.25 (12 H, s), 3.21 (2 H, d), 3.85 (3 H, s), 4.30–4.53 (3
H, m), 4.80 (1 H, m), 5.50–5.70 (2 H, m), 6.31 (2 H, s), 7.10–
7.40 (5 H, m). 13C NMR (200 MHz, DMSO): d = 23.5, 34.2,
50.8, 54.2, 67.4, 69.2, 76.8, 77.9, 89.2, 107.6, 113.5, 125.4,
126.7, 127.8, 137.0, 157.2, 171.8. HRMS: m/z calcd for
C22H30N2NaO8: 473.1900; found: 473.1918 [M + Na].
(31) First, a solution of a-D-galactose (5 mmol) and ZnBr2 (5.2
mmol) in acetone (20 mL) was stirred for 12 h and filtered.
The filtrate was concentrated and after a simple workup, the
resulting (1,2),(3,4)-diacetylgalactopyranose was dissolved
in MeCN. Then, TEMPO and Na3PO4 buffer were added and
the reaction mixture was warmed to 35 °C. Sodium chlorite
and bleach were added, and the reaction mixture was stirred
till completion of reaction. A simple workup lead to the
isolation of the desired sugar-6-acid. See: Jhao, M.; Li, J.;
Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E. J. J.;
Reider, P. J. J. Org. Chem. 1999, 64, 2564.
(27) Kaduk, C.; Wenschuh, H.; Beyermann, M.; Forner, K.;
Carpino, L. A.; Bienert, M. Lett. Pept. Sci. 1995, 2, 285.
(28) Utility of commercial activated zinc dust to deprotonate
amine hydrochloride salts is documented. Sureshbabu et al.
demonstrated the conversion of amino acid/peptide acid
ester hydrochloride salts into the corresponding free amines,
see: (a) Sureshbabu, V. V.; Ananda, K. J. Pept. Res. 2001,
57, 223. (b) For the use of zinc dust as HCl scavenger in
peptide synthesis via N-Fmoc amino acid chlorides under
non-Schotten–Baumann conditions, see: Gopi, H. N.;
Sureshbabu, V. V. Tetrahedron Lett. 1998, 39, 9769. (c)
For a similar application in N-Boc-Z-Fmoc amino acid
fluoride couplings under neutral conditions, see:
Sureshbabu, V. V.; Ananda, K. Lett. Pept. Sci. 2000, 7, 41.
(d) For the preparation of oligomer-free Z-amino acids
employing ZCl/Zn dust, see: Gopi, H. N.; Ananda, K.;
Sureshbabu, V. V. Protein Pept. Lett. 1999, 6, 233.
(29) Typical Experimental Procedure for 2a
To a stirred solution of Fmoc-Ala-OH (1 mmol) in dry
CH2Cl2, Et3N (2 mmol) and Deoxo-Fluor (1.4 mmol) were
added at 0 °C. After the addition of TMSN3 (1.3 mmol), the
reaction mixture was subjected to ultrasonication. After 10
min, H-Leu-OMe (1.5 mmol) was added, and the
ultrasonication was continued until completion of the
reaction. The reaction mixture was evaporated, hexane was
added, and the residue was filtered. It was washed with H2O,
hexane, and dried under vacuum. Finally, the compound was
recrystallized using DMSO–H2O to afford the urea as a
colorless crystalline solid.
(30) Selected Spectroscopic Data
Fmoc-Val-y(NH-CO-NH)-Leu-OBzl (2b): white solid, mp
Synlett 2009, No. 3, 407–410 © Thieme Stuttgart · New York