204
A. Massa et al. / Tetrahedron: Asymmetry 20 (2009) 202–204
from Et2O at 0 °C). The enantiomeric excess was determined by
chiral HPLC (Chiralcel OB, hexane/2-propanol 1:1, 0.6 mL/min,
254 nm, tS = 10.53 min for minor enantiomer, tR = 14.62 min for
major enantiomer). Anal. Calcd for C8H8O2S: C, 57.12; H, 4.79; S,
19.06. Found: C, 57.35; H, 4.68; S, 19.27. Mp 67–69 °C.
4.6. (S)-(À)-1-[(5-Nitro)-2-thienyl]but-3-ene-1-ol 6c
This product was purified by silica gel flash chromatography
with petroleum ether to petroleum ether/Et2O 60:40 mixture as
eluant. 1H NMR d 2.51–2.68 (m, 2H), 2.82 (br s, 1H), 4.97–5.02
(dd, 1H, J = 5.1, 7.3 Hz), 5.19–5.30 (m, 2H), 5.72–5.89 (m, 1H),
6.89–6.91 (dd, 1H, J = 0.9, 4.2 Hz), 7.80 (d, 1H, J = 4.2). 13C NMR d
43.1, 68.8, 119.9, 122.0, 128.3, 131.8, 145.9, 156.8. ESI-MS m/z
4.2. (R,R)-(+)-N1,N2-Bis-(2-(Methylsulfinyl)-benzylidene)-
ethane-1,2-diamine 4
200 [MH]+. [
a]
D = À6 (c 3.0, CHCl3). Ee 70%. The enantiomeric ex-
To
(150.0 mg, 0.89 mmol) in MeOH (7.3 mL) was added ethylenedia-
mine (30.1 L, 0.45 mmol) at room temperature. Then the mixture
a
solution of (R)-(+)-2-(methylsulfinyl)benzaldehyde
cess was determined by chiral HPLC (Chiralcel AD, hexane/2-pro-
panol 95:5, 0.8 mL/min, 254 nm, tS = 18.38 min for minor
enantiomer, tR = 20.29 min for major enantiomer). Anal. Calcd for
C8H9NO3S: C, 48.23; H, 4.55; N, 7.03; S, 16.09. Found: C, 48.42;
H, 4.64; N, 7.23; S, 16.29.
l
was heated at reflux for 22 h. After removing the solvent under re-
duced pressure, the crude oil was purified by silica gel flash chro-
matography with THF/Et2O 2:1. 1H NMR d 2.69 (s, 6H), 3.87–3.90
(m, 2H), 4.02–4.06 (m, 2H), 7.46–7.61 (m, 6H), 8.20 (d, 2H,
J = 8.32 Hz), 8.32 (s, 2H). 13C NMR d 42.9, 60.6, 122.9, 129.2,
130.2, 130.4, 131.5, 146.3, 159.6. ESI-MS m/z 361 [MH]+.
Acknowledgments
We are grateful to Università di Salerno and MIUR for the finan-
cial support.
[a]D = +329.0 (c 0.4, CHCl3). Ee 96%. Anal. Calcd for C18H20N2O2S2:
C, 59.97; H, 5.59; N, 7.77; S, 17.79. Found: C, 59.79; H, 5.77; N,
7.62; S, 17.96. Mp 71–73 °C.
References
1. (a) Roush, W. R.. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Heathcock, C. H., Eds.; Pergamon: Oxford, UK, 1991; Vol. 2, p 1; (b) Yamamoto,
Y.; Asao, N. Chem. Rev. 1993, 93, 2207–2293; (c) Marshall, J. A. Chem. Rev. 1996,
96, 31–48.
4.3. (R)-(+)-2-(Hydroxymethyl)phenyl-methyl-sulfoxide 3
To
a
solution of (R)-(+)-2-(methylsulfinyl)benzaldehyde
L,
2. Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763–2793.
(30.0 mg, 0.18 mmol) in CH3CN (3.8 mL), CH3COOH (15.0
l
3. (a) Kobayashi, S.; Nishio, K. Tetrahedron Lett. 1993, 34, 3453–3456; (b)
Kobayashi, S.; Nishio, K. Synthesis 1994, 457–459; (c) Kobayashi, S.; Nishio, K.
J. Org. Chem. 1994, 59, 6620–6628.
0.27 mmol) and NaBH3CN (45.2 mg, 0.72 mmol) were added at
room temperature. After stirring overnight, the reaction was
quenched with saturated aqueous NaHCO3 (4.0 mL), extracted
with 5 Â 3 mL of CH2Cl2, and dried over anhydrous Na2SO4. After
removing the solvent under reduced pressure, the crude oil was
purified by silica gel flash chromatography with ethyl acetate.
Yield 49%. NMR data were in agreement with those reported in
4. (a) Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B. D. J. Org. Chem. 1994, 59,
6161–6163; (b) Denmark, S. E.; Fu, J.; Lawler, M. J. J. Org. Chem. 2006, 71, 1523–
1536; (c) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2000, 122, 12021–12022; (d)
Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 123, 9488–9489; (e) Denmark, S. E.;
Fu, J. J. Am. Chem. Soc. 2003, 125, 2208–2216; (f) Denmark, S. E.; Fu, J. Org. Lett.
2002, 4, 1951–1953; (g) Denmark, S. E.; Fu, J.; Coe, D. M.; Su, X.; Pratt, N. E.;
Griedel, B. D. J. Org. Chem. 2006, 71, 1513–1522; (h) Iseki, K.; Kuroki, Y.;
Takahashi, M.; Kobayashi, Y. Tetrahedron Lett. 1996, 37, 5149–5150; (i) Iseki, K.;
Kuroki, Y.; Takahashi, M.; Kishimoto, S.; Kobayashi, Y. Tetrahedron 1997, 53,
3513–3526; (j) Thadani, A. N.; Batey, R. A. Org. Lett. 2002, 4, 3827–3830; (k)
Hirayama, L. C.; Gansey, S.; Knueppel, D.; Steiner, D.; DeLaTorre, K.; Singaram,
B. Tetrahedron Lett. 2005, 46, 2315–2318.
the literature. [
a]D = +14.8 (c 4.0, acetone), {lit. [a]D = +12.2 (c
4.0, acetone)}.2
4.4. General procedure of allylation
5. (a) Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S. J. Am. Chem. Soc. 1998, 120,
6419–6420; (b) L Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2002, 124, 4233–
4235; (c) Malkov, A. V.; Orsini, M.; Pernazza, D.; Muir, K. W.; Langer, V.;
Maghani, P.; Kocovsky, P. Org. Lett. 2002, 4, 1047–1049; (d) Shimada, T.; Kina,
A.; Ikeda, S.; Hayashi, T. Org. Lett. 2002, 4, 2799–2801; (e) Malkov, A. V.; Bell,
M.; Orsini, M.; Pernazza, D.; Massa, M.; Herrmann, P.; Meghani, P.; Kocovsky, P.
J. Org. Chem. 2003, 68, 9659–9668; (f) Malkov, A. V.; Dufkova, L.; Farrugia, L.;
Kocovsky, P. Angew. Chem., Int. Ed. 2003, 42, 3674–3677; (g) Traverse, J. F.;
Zhao, Y.; Hoveyda, A. H.; Snapper, M. L. Org. Lett. 2005, 7, 3151–3154; (h)
Pignataro, L.; Benaglia, M.; Annunziata, R.; Cinquini, M.; Cozzi, F.; Celentano, G.
J. Org. Chem. 2006, 71, 1458–1463.
6. (a) Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron Lett. 1998, 39,
2767–2770; (b) Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron 1999,
55, 977–988.
7. Chataigner, I.; Piarulli, U.; Gennari, C. Tetrahedron Lett. 1999, 40, 3633–3634.
8. (a) Nakajima, M.; Kotani, S.; Ishizuka, T.; Hashimoto, S. Tetrahedron Lett. 2005,
46, 157–159; (b) Kotani, S.; Hashimoto, S.; Nakajima, M. Tetrahedron 2007, 63,
3122–3132; (c) Simonini, V.; Tenaglia, M.; Benincori, T. Adv. Synth. Catal. 2008,
350, 561–564.
In a flame-dried, two-necked, round-bottomed flask, allyltri-
chlorosilane (19 L, 0.13 mmol) was added to a solution of sulf-
oxide (0.03 mmol), diisopropylethylamine (20 L, 0.13 mmol),
l
l
and N(Bu)4I (44.3 mg, 0.12 mmol) in dry dichloromethane
(0.6 mL) under nitrogen at À78 °C. After 5 min of stirring at that
temperature, aldehyde was added (0.10 mmol). At the end of the
reaction, the reaction was quenched with saturated aqueous
NaHCO3 (1.0 mL), extracted with 10 Â 3 mL of CH2Cl2, and dried
over anhydrous Na2SO4. After removing the solvent under re-
duced pressure, the crude oil was purified by silica gel flash
chromatography.
4.5. (S)-(À)-1-[(5-Nitro)-2-furyl]-but-3-en-1-ol 6b
9. (a) Senanayake, C. H.;Krishnamurthy, D.;Lu, Z. H.;Han, Z.; Gallou, I. Aldrichim. Acta
2005, 38, 93–104; (b) Fernandez, I.; Khiar, N. Chem. Rev 2003, 103, 3651–3706.
10. Kobayashi, S.; Ogana, C.; Konishi, H.; Sugiura, M. J. Am. Chem. Soc. 2003, 125,
6610–6611.
11. (a) Massa, A.; Malkov, A. V.; Kocovsky, P.; Scettri, A. Tetrahedron Lett. 2003, 44,
7179–7181; (b) Massa, A.; Malkov, A. V.; Kocovsky, P.; Scettri, A. Tetrahedron
Lett. 2003, 44, 9067.
12. Rowlands, G. J.; Barnes, W. K. Chem. Commun. 2003, 2712–2713.
13. Fernandez, I.; Valdivia, V.; Peria Leal, M.; Khiar, N. Org. Lett. 2007, 9, 2215–2218.
14. Garcia-Flores, F.; Flores-Michel, L. S.; Juaristi, E. Tetrahedron Lett. 2006, 47,
8235–8238.
15. Massa, A.; Mazza, V.; Scettri, A. Tetrahedron: Asymmetry 2005, 16, 2271–2275.
16. Pirkle, W. H.; Hoekstra, M. S. J. Am. Chem. Soc. 1976, 98, 1832–1839.
17. Lai, C.-Y.; Mak, W. L.; Chan, E. Y. Y.; Sau, Y.-K.; Zhang, Q.-F.; Lo, S. M. F.; Leung,
W.-H. Inorg. Chem. 2003, 42, 5863–5870.
This product was purified by silica gel flash chromatography
with petroleum ether to petroleum ether/Et2O 60:40 mixture as
eluant. 1H NMR d 2.56 (br s, 1H), 2.58–2.74 (m, 2H), 4.83 (t, 1H,
J = 5.5 Hz), 5.19–5.24 (m, 2H), 5.75–5.81 (m, 1H), 6.52 (d, 1H,
J = 3.6 Hz), 7.27 (d, 1H, J = 3.6 Hz). 13C NMR d 39.9, 66.7, 109.4,
112.4, 119.9, 132.0, 150.6, 159.7. ESI-MS m/z 184 [MH]+. [
a]
D
À62 (c 1.0, CHCl3). Ee 66%. The enantiomeric excess was deter-
mined by chiral HPLC (Chiralcel AD, hexane/2-propanol 95:5,
0.8 mL/min, 254 nm, tS = 18.04 min for major enantiomer,
tR = 20.97 min for minor enantiomer). Anal. Calcd for C8H9NO4: C,
52.46; H, 4.95; N, 7.65. Found: C, 52.25; H, 4.77; N, 7.81.