Tacripyrines as Multitarget-Directed Ligands
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 9 2731
(3) Cummings, J. L. Treatment of Alzheimer’s disease: current and future
therapeutic approaches. ReV. Neurol. Dis. 2004, 1, 60–69.
(4) Scarpini, E.; Scheltens, P.; Feldman, H. Treatment of Alzheimer’s
disease: current status and new perspectives. Lancet Neurol. 2003, 2,
539–547.
(5) Talesa, V. N. Acetylcholinesterase in Alzheimer’s disease. Mech.
Ageing DeV. 2001, 122, 1961–1969.
(24) Sobrado, M.; Lo´pez, M. G.; Carceller, F.; Garc´ıa, A. G.; Roda, J. M.
Combined nimodipine and citicoline reduce infarct size, attenuate
apoptosis, and increase bcl-2 expression after focal cerebral ischemia.
Neuroscience 2003, 118, 107–113.
(25) Fu, H.; Li, W.; Lao, Y.; Luo, J.; Lee, N. T.; Kan, K. K.; Tsang,
H. W.; Tsim, K. W.; Pang, Y.; Li, Z.; Chang, D. C.; Li, M.; Han,
Y. Bis(7)-tacrine attenuates beta amyloid-induced neuronal apop-
tosis by regulating L-type calcium channels. J. Neurochem. 2006,
98, 1400–1410.
(6) Racchi, M.; Mazzucchelli, M.; Porrello, E.; Lanni, C.; Govoni, S.
Acetylcholinesterase inhibitors: novel activities of old molecules.
Pharmacol. Res. 2004, 50, 441–451.
(26) Perry, G.; Cash, A. D.; Smith, M. A. Alzheimer’ s disease and oxidative
stress. J. Biomed. Biotechnol. 2002, 2, 120–123.
´
(7) Inestrosa, N. C.; Alvarez, A.; Pe´rez, C. A.; Moreno, R. D.; Vicente,
M.; Linker, C.; Casanueva, O. I.; Soto, C.; Garrido, J. Acetylcho-
linesterase accelerates assembly of amyloid-beta-peptides into Alzhe-
imer’s fibrils: possible role of the peripheral site of the enzyme. Neuron
1996, 16, 881–891.
(27) Tan, D. X.; Manchester, L. C.; Sainz, R.; Mayo, J. C.; Alvares, F. L.;
Reiter, R. J. Antioxidant strategies in protection against neurodegen-
erative disorders. Expert Opin. Ther. Pat. 2003, 13, 1513–1543.
(28) Klatte, E. T.; Scharre, D. W.; Nagaraja, H. N.; Davis, R. A.;
Beversdorf, D. Q. Combination therapy of donepezil and vitamin E
in Alzheimer’s disease. Alzheimer Dis. Assoc. Disord. 2003, 17, 113–
116.
(8) Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. beta-Amyloid
aggregation induced by human acetylcholinesterase: inhibition studies.
Biochem. Pharmacol. 2003, 65, 407–416.
(9) Cavalli, A.; Bolognesi, M. L.; Capsoni, S.; Andrisano, V.; Bartolini,
M.; Margotti, E.; Cattaneo, A.; Recanatini, M.; Melchiorre, C. A small
molecule targeting the multifactorial nature of Alzheimer’s disease.
Angew. Chem., Int. Ed. 2007, 46, 3689–3692.
(29) Marco-Contelles, J.; Leo´n, R.; de Los R´ıos, C.; Guglietta, A.; Terencio,
J.; Lo´pez, M. G.; Garc´ıa, A. G.; Villarroya, M. Novel multipotent
tacrine-dihydropyridine hybrids with improved acetylcholinesterase
inhibitory and neuroprotective activities as potential drugs for the
treatment of Alzheimer’s disease. J. Med. Chem. 2006, 49, 7607–
7610.
(10) Mun˜oz-Torrero, D.; Camps, P. Dimeric and hybrid anti-Alzheimer
drug candidates. Curr. Med. Chem. 2006, 13, 399–422.
(11) Savini, L.; Gaeta, A.; Fattorusso, C.; Catalanotti, B.; Campiani, G.;
Chiasserini, L.; Pellerano, C.; Novellino, E.; McKissic, D.; Saxena,
A. Specific targeting of acetylcholinesterase and butyrylcholinesterase
recognition sites. Rational design of novel, selective, and highly potent
cholinesterase inhibitors. J. Med. Chem. 2003, 46, 1–4.
(12) Decker, M. Homobivalent quinazolinimines as novel nanomolar
inhibitors of cholinesterases with dirigible selectivity toward butyryl-
cholinesterase. J. Med. Chem. 2006, 49, 5411–5413.
(13) Carlier, P. R.; Chow, E. S.; Han, Y.; Liu, J.; El Yazal, J.; Pang, Y. P.
Heterodimeric tacrine-based acetylcholinesterase inhibitors: investigat-
ing ligand-peripheral site interactions. J. Med. Chem. 1999, 42, 4225–
4231.
(14) Cavalli, A.; Bolognesi, M. L.; Minarini, A.; Rosini, M.; Tumiatti, V.;
Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat
neurodegenerative diseases. J. Med. Chem. 2008, 51, 347–372.
(15) Rodr´ıguez-Franco, M. I.; Ferna´ndez-Bachiller, M. I.; Pe´rez, C.;
Herna´ndez-Ledesma, B.; Bartolome´, B. Novel tacrine-melatonin
hybrids as dual-acting drugs for Alzheimer’s disease with improved
acetylcholinesterase inhibitory and antioxidant properties. J. Med.
Chem. 2006, 49, 459–462.
(16) Sterling, J.; Herzig, Y.; Goren, T.; Finkelstein, N.; Lerner, D.;
Goldenberg, W.; Miskolczi, I.; Molnar, S.; Rantal, F.; Tamas, T.; Toth,
G.; Zagyva, A.; Zekany, A.; Finberg, J.; Lavian, G.; Gross, A.;
Friedman, R.; Razin, M.; Huang, W.; Krais, B.; Chorev, M.; Youdim,
M. B.; Weinstock, M. Novel dual inhibitors of AChE and MAO
derived from hydroxy aminoindan and phenethylamine as potential
treatment for Alzheimer’s disease. J. Med. Chem. 2002, 45, 5260–
5279.
(17) Toda, N.; Tago, K.; Marumoto, S.; Takami, K.; Ori, M.; Yamada, N.;
Koyama, K.; Naruto, S.; Abe, K.; Yamazaki, R.; Hara, T.; Aoyagi,
A.; Abe, Y.; Kaneko, T.; Kogen, H. A conformational restriction
approach to the development of dual inhibitors of acetylcholinesterase
and serotonin transporter as potential agents for Alzheimer’s disease.
Bioorg. Med. Chem. 2003, 11, 4389–4415.
(30) Schwyzer, A.; Cruikshanks, G. S. Reaction products of ethyl benza-
lacetoacetate an cyclic ketones in the presence of secondary bases or
sodium etylate. J. Prakt. Chem. 1914, 89, 189–193.
(31) Fey, P.; Angerbauer, R.; Huebsch, W.; Bischoff, H.; Petzinna, D.;
Schmidt, D.; Thomas, G. Preparation of pyrimidinyldihydroxyala-
kanoates as antihypercholesterolemics. Patent EP 330057, 1989.
(32) Meyer, H.; Bossert, F.; Vater, W.; Stoepel, K. Dialkyl 4-aryl-2,6-
dimethyl-1,4-dihydro-3,5-pyridinecarboxylates. Patent DE 2117572,
1972.
(33) Loudon, J. D.; Tennant, G. Substituent interactions in ortho-substituted
nitrobenzenes. J. Chem. Soc. 1962, 3092–3097.
(34) Edwards, J. D.; Pianka, M. Fungitoxicity. IV. Fungitocixity of certain
ethylenic compounds. J. Sci. Food Agric. 1992, 14, 55–58.
(35) Heller, G.; Lauth, H.; Buchwaldt, A. Reactivity of the nitrobenzal-
dehydes. Chem. Ber. 1922, 55B, 483–489.
(36) Silver, R. F.; Kerr, K.; Frandsen, P. D.; Kelley, S. J.; Holmes, H. L.
Synthesis and chemical reactions of some conjugated heteroenoid
compounds. Can. J. Chem. 1967, 9, 45.
(37) Baltzly, R. The preparation and properties of a platinized charcoal
catalyst with some observations on the behaviour of inhibitors. J. Am.
Chem. Soc. 1952, 74, 4586–4589.
(38) Marvel, C. S.; Stille, J. K. Preparation of the pyridalacetones and the
inductive effect of nitrogen on the degradation of the intermediate
aldols. J. Org. Chem. 1957, 22, 1451–1457.
(39) Troschu¨tz, R.; Dennstedt, T. Synthese von substituierten 2-Aminoni-
cotinonitrilen. Arch. Pharm. 1994, 327, 33–40.
(40) McElvain, S. M.; Schoeder, J. P. Orthoesters and related compounds
from malono- and succinonitriles. J. Am. Chem. Soc. 1949, 71, 40–
46.
(41) Troschu¨tz, R. Synthesis of pyrido[2,3-d]pyrimidines with a trimetho-
prom partial structure. Arch. Pharm. 1989, 322, 285–290.
(42) Cheng, C. C.; Yan, S. J. The Friedla¨nder synthesis of quinolines. Org.
React. 1982, 28, 37–201.
(43) Leo´n, R.; Marco-Contelles, J.; Garc´ıa, A. G.; Villarroya, M. Synthesis,
acetylcholinesterase inhibition and neuroprotective activity of new
tacrine analogues. Bioorg. Med. Chem. 2005, 13, 1167–1175.
(44) Rappaport, F.; Fischl, J.; Pinto, N. An improved method for the
estimation of cholinesterase activity in serum. Clin. Chim. Acta 1959,
4, 227–230.
(45) Ellman, G. L.; Courtney, K. D.; Andres, B. J.; Featherstone, R. M. A
new and rapid colorimetric determination of acetylcholinesterase
activity. Biochem. Pharmacol. 1961, 7, 88–95.
(18) Rosini, M.; Antonello, A.; Cavalli, A.; Bolognesi, M. L.; Minarini,
A.; Marucci, G.; Poggesi, E.; Leonardi, A.; Melchiorre, C. Prazosin-
related compounds. Effect of transforming the piperazinylquinazoline
moiety into an aminomethyltetrahydroacridine system on the affinity
for alpha1-adrenoreceptors. J. Med. Chem. 2003, 46, 4895–4903.
(19) Elsinghorst, P. W.; Cieslik, J. S.; Mohr, K.; Tra¨nkle, C.; Gu¨tschow,
M. First gallamine-tacrine hybrid: design and characterization at
cholinesterases and the M2 muscarinic receptor. J. Med. Chem. 2007,
50, 5685–5695.
(20) Fang, L.; Appenroth, D.; Decker, M.; Kiehntopf, M.; Roegler, C.;
Deufel, T.; Fleck, C.; Peng, S.; Zhang, Y.; Lehmann, J. Synthesis and
biological evaluation of NO-donor-tacrine hybrids as hepatoprotective
anti-Alzheimer drug candidates. J. Med. Chem. 2008, 51, 713–716.
(21) Kruman, I.; Guo, Q.; Mattson, M. P. Calcium and reactive oxygen
species mediate staurosporine-induced mitochondrial dysfunction and
apoptosis in PC12 cells. J. Neurosci. Res. 1998, 51, 293–308.
(22) Mattson, M. P.; Cheng, B.; Davis, D.; Bryant, K.; Lieberburg, I.; Rydel,
R. E. beta-Amyloid peptides destabilize calcium homeostasis and
render human cortical neurons vulnerable to excitotoxicity. J. Neurosci.
1992, 12, 376–389.
(46) Cousins, M. S.; Carriero, D. L.; Salamone, J. D. Tremulous jaw
movements induced by the acetylcholinesterase inhibitor tacrine:
effects of antiparkinsonian drugs. Eur. J. Pharmacol. 1997, 322, 137–
145.
(47) Piazzi, L.; Rampa, A.; Bisi, A.; Gobbi, S.; Belluti, F.; Cavalli, A.;
Bartolini, M.; Andrisano, V.; Valenti, P.; Recanatini, M. 3-(4-
{[Benzyl(methyl)amino]methyl}phenyl)-6,7-dimethoxy-2H-2-chrome-
none (AP2238) Inhibits Both Acetylcholinesterase and Acetylcho-
linesterase-Induced ꢀ-Amyloid Aggregation: A Dual Function Lead
for Alzheimer’s Disease Therapy. J. Med. Chem. 2003, 46, 2279–
2282.
(23) Cano-Abad, M. F.; Villarroya, M.; Garc´ıa, A. G.; Gabila´n, N. H.;
Lo´pez, M. G. Calcium entry through L-type calcium channels causes
mitochondrial disruption and chromaffin cell death. J. Biol. Chem.
2001, 276, 39695–39704.
(48) Harel, M.; Schalk, I.; Ehret-Sabatier, L.; Bouet, F.; Goeldner, M.; Hirth,
C.; Axelsen, P. H.; Silman, I.; Sussman, J. L. Quaternary ligand binding
to aromatic residues in the active-site gorge of acetylcholinesterase.
Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 9031–9035.