Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
There are no conflicts to declare.
DOI: 10.1039/D0CC05192F
Notes and references
1
(a) J. Lee, L. Chen, A. H. West, G. B. Richter-Addo, Chem. Rev.
2002, 102, 1019. (b) B. G. Gowenlock, G. B. Richter-Addo,
Chem. Rev. 2004, 104, 3315.
2
3
4
R. Tatsunami, T. Yoshioka, J. Agric. Food Chem. 2006, 54, 590.
M. D. Corbett, Bioorg. Chem. 1974, 3, 361.
(a) R. Breslow, J. Am. Chem. Soc. 1957, 79, 1762. (b) R.
Breslow, J. Am. Chem. Soc. 1958, 80, 3719.
Figure 3. X-ray crystal structure of IMes=NArBr3 (3-Br3Ar) (CCDC 1976500).
5
6
M. D. Corbett, B. R. Chipko, Bioorg. Chem. 1980, 9, 273.
(a) X. Bugaut, F. Glorius, Chem. Soc. Rev. 2012, 41, 3511. (b) H.
Ohmiya, ACS Catal., 2020, 10, 6862. (c) T. Ishii, K. Nagao and
H. Ohmiya, Chem. Sci., 2020, 11, 5630.
S32). In addition to the NMR and mass spectroscopic
characterizations of 3-Br3Ar (Figures S33-S35), single crystal X-
ray diffraction confirms the molecular structure of 3-Br3Ar
(Figures 3 and S36). Thus, the distribution of the products
comprising a mixture of IMes=O and IMes=NArBr3, indeed,
demonstrates that the metastable spiro-oxaziridine
7
(a) A. Berkessel, S. Elfert, V. R. Yatham, J.-M. Neudörfl, N. E.
Schlörer, J. H. Teles, Angew. Chem. Int. Ed. 2012, 51, 12370.
(b) M. Paul, P. Sudkaow, A. Wessels, N. E. Schlörer, J.-M.
Neudörfl, A. Berkessel, Angew. Chem. Int. Ed. 2018, 57, 8310.
(a) S. S. Sohn, E. L. Rosen, J. W. Bode, J. Am. Chem. Soc. 2004,
126, 14370−14371. (b) C. Burstein, F. Glorius, Angew. Chem.
Int. Ed. 2004, 43, 6205.
8
9
intermediate 2b
tribromoaryl substituent decomposes through two competitive
pathways: (A) loss of arylnitrene to yield (Scheme 3, path d);
-Br3Ar with electron deficient 2,4,6-
C. E. I. Knappke, J. M. Neudörfl, A. J. Von Wangelin, Org.
Biomol. Chem. 2010, 8, 1695.
1
and (B) oxygen-atom transfer to provide 3-Br3Ar (Scheme 3, 10 D. A. DiRocco, K. M. Oberg, T. Rovis, J. Am. Chem. Soc. 2012,
134, 6143.
path e). Illustrating the trapping of oxygen-atom, a reaction of
IMes with Br3ArNO in the presence of excess thioanisole at 78
C results in the formation of methyl phenyl sulfoxide (Figure
11 (a) C. Fischer, S. W. Smith, D. A. Powell, G. C. Fu, J. Am. Chem.
Soc. 2006, 128, 1472. (b) A. T. Biju, M. Padmanaban, N. E.
Wurz, F. Glorius, Angew. Chem. Int. Ed. 2011, 50, 8412. (c) S.
I. Matsuoka, Y. Ota, A. Washio, A. Katada, K. Ichioka, K. Takagi,
M. Suzuki, Org. Lett. 2011, 13, 3722.
12 P. Zuman, B. Shah, Chem. Rev. 1994, 94, 1621.
13 E. W. Meijer, S. Nijhuis, F. C. B. M. Van Vroonhoven, J. Am.
Chem. Soc. 1988, 110, 7209.
14 N. P. Gritsan, M. S. Platz, Chem. Rev. 2006, 106, 3844.
15 (a) T. W. Fong, P. K. Patra, J. Seayad, Y. Zhang and J. Y. Ying,
Org. Lett., 2008, 10, 2333. (b) Z. X. Sun and Y. Cheng, Org.
Biomol. Chem., 2012, 10, 4088.
16 (a) R. A. Odum, M. Brenner, J. Am. Chem. Soc. 1966, 88, 2074.
(b) B. M. Armstrong, P. B. Shevlin, J. Am. Chem. Soc. 1994, 116,
4071. (c) E. Łukasik, Z. Wróbel, Synlett 2014, 25, 217.
17 A. W. Freeman, M. Urvoy and M. E. Criswell, J. Org. Chem.,
2005, 70, 5014.
-
°
S37). The oxygen-atom transfer from diamino imine-N-oxide 2a-
Ph to a model substrate Me2S is estimated to proceed via a
transition state TS‡
with an activation barrier of 34.6
OAT
kcal/mol (Figures S38-S42). However, a feasible transition state
for the direct oxygen-atom transfer from spiro-oxaziridine 2b-
Ph to Me2S was not detected computationally.
In summary, the present work demonstrates the activation
and deoxygenation of nitrosoarene by N-heterocyclic carbene.
A combination of spectroscopic and computational studies
reveals that NHC interacts with ArNO to yield Breslow-type 2,2’-
diamino imine-N-oxide 2a and spiro-oxaziridine 2b
intermediates, which subsequently decays to generate
18 J. P. Moerdyk, C. W. Bielawski, Nat. Chem. 2012, 4, 275–280.
19 R. Ramanathan, A.-D. Su, N. Alvarez, N. Blumenkrantz, S. K.
Chowdhury, K. Alton, J. Patrick, Anal. Chem. 2000, 72, 1352.
20 See Electronic Supplementary Information for the details.
21 D. T. Chase, J. P. Moerdyk, C. W. Bielawski, Org. Lett. 2012, 14,
5510.
22 W. T. Borden, N. P. Gritsan, C. M. Hadad, W. L. Karney, C. R.
Kemnitz, M. S. Platz, Acc. Chem. Res. 2000, 33, 765–771.
23 K. S. Williamson, D. J. Michaelis, T. P. Yoon, Chem. Rev. 2014,
114, 8016.
24 S. Kundu, S. C. E. Stieber, M. G. Ferrier, S. A. Kozimor, J. A.
Bertke, T. H. Warren, Angew. Chem. Int. Ed. 2016, 55, 10321.
25 J. M. Fukuto, S. J. Carrington, Antioxid. Redox Signal. 2011, 14,
1649.
26 F. Doctorovich, D. E. Bikiel, J. Pellegrino, S. A. Suárez, M. A.
Martí, Acc. Chem. Res. 2014, 47, 2907.
arylnitrene. Interestingly, this report portrays
a
new
fundamentally significant route establishing a connection
between two 6e– species, namely carbene and nitrene. Notably,
ArNO is often considered as the stable analog of relatively more
reactive nitroxyl (HNO),24 an important species in NO signalling
pathways.25 Thus, this reactivity pattern of ArNO towards NHCs
offers a view towards a possible interaction between HNO and
thiamine in the biological milieu. Insights gained from this work
will be extended in our laboratory to trap HNO employing
suitable NHC compounds which, in turn, may enable a new
method26 to sense transient HNO species in different
biochemical transformations of NO.
S.K. gratefully acknowledges ECR/2017/003200 from SERB.
S.K., A.B.S., and S.G. are thankful to the supports from IISER-
TVM. The authors thank Amanda Ben for her support in
preparing one of the carbene precursors and Prof. Yashwant D.
Vankar (Emeritus Professor, IISER-TVM) for valuable comments.
Conflicts of interest
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins