M. Donghi et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1930–1934
1933
nishing the bromo derivative 30 in 50% yield. The benzylic bro-
mide 30 was displaced with a variety of secondary amines at
room temperature. The corresponding amides 10–11 were ob-
tained by one pot aminolysis with para-fluorobenzyl amine
(30–40%) (Scheme 2).
characterized by a pyrido[1,2-a]pyrimidin-4-one scaffold thus
eliminating the presence of any stereocenters in the core of the
inhibitor. Various substituents were tolerated at position 9 of the
bicyclic scaffold. The presence of an oxalamide was very beneficial
for both intrinsic and cellular activity. A number of very potent
compounds with nanomolar activity both in the enzymatic and
in the cellular spread assay under high serum conditions were
identified. The PK profile of the representative compound 21
showed good parameters.
Compound 30 was also reacted under Staudinger conditions
with sodium azide to yield, after reduction of the azide, the amino
methyl derivative. During this reaction, migration of the benzoate
from the 50-OH to the newly formed amino functionality was ob-
served (14%, compound 12).
The methyl ester 3110 was transformed with para-fluorobenzyl-
amine into the corresponding amide 32a (Scheme 3).
Acknowledgements
Treatment of 32a with 37% hydrogen bromide in acetic acid led
to the cleavage of the Cbz group liberating the amine 32b as its
hydrobromide salt in quantitative yield. This material was sub-
jected to reductive amination under standard conditions leading
to the alkylated amines 5–7 and 33a–b (30–60%). These amines
were then acylated with a series of acid chlorides leading to com-
The authors thank Silvia Pesci for NMR studies, William B.
Schleif and Peter J. Felock for biological testing and Fabrizio Fiore
and Ralph Laufer for PK studies.
References and notes
1. Source:
WHO
Factsheet
HIV.
pounds 8 and 15–19 (46–56%). For the synthesis of the
a-amino
2. (a) Mushawar, I. K. Perspect. Med. Virol. 2007, 13, 75; (b) Murphy, E.-M.;
Jimenez, H. R.; Smith, S. M. Adv. Pharmacol. 2008, 56, 27.
acid derivatives 13–14, the acylation was carried out with chloro-
acetyl chloride, followed by substitution of the resulting alkyl chlo-
ride with the corresponding amine (21–25%).
Alternatively, acylation of the monoamines (5, 7, 34) was car-
ried out by heating them with oxalic acid methylester chloride
(Scheme 4). The resulting intermediary oxalic acid methylester
amides were transformed in one pot into unsymmetric bis-amides
by treatment with different amines, yielding compounds 20–27
(29–56%).11
3. (a) Nair, V. Rev. Med. Virol. 2002, 12, 179; (b) Young, S. D. Ann. Rep. Med. Chem.
2003, 38, 173; (c) De Clercq, E. Exp. Opin. Emerging Drugs 2005, 10, 241.
4. (a) Zhuang, L.; Wai, J. S.; Embrey, M. W.; Fisher, T. S.; Egbertson, M. S.; Payne, L.
P., ; Guare, J. P., Jr.; Vacca, J. P.; Hazuda, D. J.; Felock, P. J.; Wolfe, A. L.; Stillmock,
K. A.; Witmer, M. V.; Moyer, G.; Schleif, W. A.; Gabryelski, L. J.; Leonard, Y. M.;
Lynch, J. J., Jr.; Michelson, S. R.; Young, S. D. J. Med. Chem. 2003, 46, 453; (b)
Hazuda, D. J.; Anthony, N. J.; Gomez, R. P.; Jolly, S. M.; Wai, J. S.; Zhuang, L.;
Fisher, T. E.; Embrey, M. W.; Guare, J. P., Jr.; Egbertson, M. S.; Vacca, J. P.; Huff, J.
R.; Felock, P. J.; Witmer, M. V.; Stillmock, K. A.; Danovich, R.; Grobler, J.; Miller,
M. D.; Espeseth, A. S.; Jin, L.; Chen, I.-W.; Lin, J. H.; Kassahun, K.; Ellis, J. D.;
Wong, B. K.; Xu, W.; Pearson, P. G.; Schleif, W. A.; Cortese, R.; Emini, E.; Summa,
V.; Holloway, M. K.; Young, S. D. Proc. Natl. Acad. Sci. 2004, 101, 11233; (c)
Petrocchi, A.; Koch, U.; Matassa, V. G.; Pacini, B.; Stillmock, K. A.; Summa, V.
Bioorg. Med. Chem. Lett. 2007, 17, 350; (d) Egbertson, M. S. Curr. Top. Med. Chem.
2007, 7, 1251.
In conclusion, we have designed and studied a new viable alter-
native bicyclic template of HIV-1-integrase inhibitors, which is
O
N
O
N
5. Pommier, Y.; Johnson, A. A.; Marchand, C. Nat. Rev. Drug Discovery 2005, 4,
236.
4F-BnNH2
OH
OH
N
N
MeOH, reflux
6. (a) Summa, V.; Petrocchi, A.; Bonelli, F.; Crescenzi, B.; Donghi, M.; Ferrara, M.;
Fiore, F.; Gardelli, C.; Gonzalez Paz, O.; Hazuda, D. J.; Jones, P.; Kinzel, O.; Laufer,
R.; Monteagudo, E.; Muraglia, E.; Nizi, E.; Orvieto, F.; Pace, P.; Pescatore, G.;
Scarpelli, R.; Stillmock, K.; Witmer, M. V.; Rowley, M. J. Med. Chem. 2008, 51,
5843; (b) Pace, P.; Rowley, M. Curr. Opin. Drug Disc. Dev. 2008, 11, 471; (c)
Deeks, S. G.; Kar, S.; Gubernick, S. I.; Kirkpatrick, P. Nature Rev. Drug. Disc. 2008,
7, 117; (d) Sayana, S.; Khanlou, H. Expert Rev. Anti-Inf. Ther. 2008, 6, 419.
7. Gardelli, C.; Nizi, E.; Muraglia, E.; Crescenzi, B.; Ferrara, M.; Orvieto, F.; Pace, P.;
Pescatore, G.; Poma, M.; Rico Ferreira, M. d. R.; Scarpelli, R.; Homnick, C. F.;
Ikemoto, N.; Alfieri, A.; Verdirame, M.; Bonelli, F.; Gonzales Paz, O.; Taliani, M.;
Monteagudo, E.; Pesci, S.; Laufer, R.; Felock, P.; Stilmock, K. A.; Hazuda, D.;
Rowley, M.; Summa, V. J. Med. Chem. 2007, 50, 4953.
8. (a) Guare, J. P.; Wai, J. S.; Gomez, R. P.; Anthony, N. J.; Jolly, S. M.; Cortes, A. R.;
Vacca, J. P.; Felock, P. J.; Stillmock, K. A.; Schleif, W. A.; Moyer, G.; Gabryelski, L.
J.; Chen, I.; Hazuda, D. J.; Young, S. D. Biorg. Med. Chem. Lett. 2006, 16, 2900; (b)
Hazuda, D. J.; Young, S. D.; Guare, J. P.; Anthony, N. J.; Gomez, R. P.; Wai, J. S.;
Vacca, J. P.; Handt, L.; Motzel, S. L.; Klein, H. J.; Dornadula, G.; Danovich, R. M.;
Witmer, M. V.; Wilson, K. A. A.; Tussey, L.; Schleif, W. A.; Gabryelski, L. S.; Jin, L.;
Miller, M. D.; Casimiro, D. R.; Emini, E. A.; Shiver, J. W. Science 2004, 305, 528;
(c) Muraglia, E.; Kinzel, O.; Gardelli, C.; Crescenzi, B.; Donghi, M.; Ferrara, M.;
Nizi, E.; Orvieto, F.; Pescatore, G.; Laufer, R.; Gonzalez-Paz, O.; Di Marco, A.;
Fiore, F.; Monteagudo, E.; Fonsi, M.; Felock, P. J.; Rowley, M.; Summa, V. J. Med.
Chem. 2008, 51, 861.
O
CO2Me
NHR
HN
NHCbz
31
32a (R=Cbz)
32b (R=H)
HBr
AcOH
F
O
N
O
R3COCl,
RCHO
NaCNBH3
OH
OH
N
N
DCE, 80 ºC
O
O
N
R3
N
HN
N
HN
R2
R3
R2
O
5 (R2 = Me)
8
6 (R2 = Et)
and
F
7 (R2 = R3 = Me)
33a (R2 = nPr)
33b (R2 = iPr)
F
15-19
9. Zhuang, L.; Wai, J. S.; Embrey, M. W.; Fisher, T. S.; Egbertson, M. S.; Payne, L. P.;
Guare, J. P., Jr.; Vacca, J. P.; Hazuda, D. J.; Felock, P. J.; Wolfe, A. L.; Stillmock, K.
A.; Witmer, M. V.; Moyer, G.; Schleif, W. A.; Gabryelski, L. J.; Leonard, Y. M.;
Lynch, J. J., Jr.; Michelson, S. R.; Young, S. D. J. Med. Chem. 2003, 46, 453.
10. Kinzel, O. D.; Donghi, M.; Maguire, C. K.; Muraglia, E.; Pesci, S.; Rowley, M.;
Summa, V. Tetrahedron Lett. 2008, 49, 6556.
Scheme 3. Synthesis of amino pyrido pyrimidines derivatives.
O
1)
O
N
O
N
Cl
11. Synthetic and brief spectroscopic data on compound 24: Step 1: Compound 3110
(1.1 mmol) was dissolved in MeOH (0.08 M) and p-fluorobenzylamine
(2.16 mmol, 2 equiv) was added. The resulting suspension was stirred for
16 h at 80 °C. The solvent was evaporated and the residue washed with HCl
2 M in Et2O.1HNMR (400 MHz, DMSO-d6) d 12.45 (s, 1H), 10.44 (s br, 1H), 10.02
(s, 1H), 8.45 (d, J = 7.1 Hz, 1H), 8.24 (d, J = 7.5 Hz, 1H), 7.48–7.38 (m, 6H), 7.18
(m, 3H), 5.29 (s, 2H), 4.61 (s, br, 2H); MS (ES+) m/z 463 (M+H)+.Step 2: benzyl
MeO
OH
OH
N
N
O
O
O
O
DCE, 50-80 ºC
HN
HN
R5
N
HN
2) R5 R5
R2
N
R2
N
R5
O
H
5 (R2 = Me)
7 (R2 = Et)
20-27
(2-{[(4-fluorobenzyl)amino]
carbonyl}-3-hydroxy-4-oxo-4H-pyrido[1,2-
a]pyrimidin-9-yl)carbamate (1.1 mmol) was dissolved in acetic acid (0.07 M)
and HBr (30% in acetic acid) was added. The resulting solution was stirred at rt
for 2 h. The solvent was evaporated, the residue dissolved several times in
toluene and the solvent evaporated. The resulting solid was dissolved in 1,2-
dichloroethane-MeOH (1:1, 0.02 M) acetaldehyde (1.1 mmol, 1 equiv) and
34a (R2 = nPr)
34b (R2 = iPr)
F
F
Scheme 4. Oxalamide synthesis.