C. Zheng et al. / Tetrahedron 66 (2010) 2875–2880
2879
J. C. Org. Lett. 2007, 9, 2609; (g) Li, G.; Rowland, G. B.; Rowland, E. B.; Antilla, J. C.
Org. Lett. 2007, 9, 4065; (h) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed.
2008, 47, 4016; (i) Kang, Q.; Zheng, X.-J.; You, S.-L. Chem.dEur. J. 2008, 14, 3539;
(j) Sheng, Y.-F.; Li, G.-Q.; Kang, Q.; Zhang, A.-J.; You, S.-L. Chem.dEur. J. 2009, 15,
3351; (k) Kang, Q.; Zhao, Z.-A.; You, S.-L. Tetrahedron 2009, 65, 1603; (l) Sun, F.-L.;
Zeng, M.; Gu, Q.; You, S.-L. Chem.dEur. J. 2009, 15, 8709.
4. For selected examples: (a) Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int.
Ed. 2005, 44, 7424; (b) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte,
M. Org. Lett. 2005, 7, 3781; (c) Rueping, M.; Antonchich, A. P.; Theissmann, T.
Angew. Chem., Int. Ed. 2006, 45, 3683; (d) Rueping, M.; Antonchich, A. P.;
Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 6751; (e) Rueping, M.; Anton-
chich, A. P. Angew. Chem., Int. Ed. 2007, 46, 4562; (f) Li, G.; Liang, Y.; Antilla, J. C.
J. Am. Chem. Soc. 2007, 129, 5830; (g) Zhou, J.; List, B. J. Am. Chem. Soc. 2007, 129,
7498; (h) Kang, Q.; Zhao, Z.-A.; You, S.-L. Adv. Synth. Catal. 2007, 349, 1657; (i)
Guo, Q.-S.; Du, D.-M.; Xu, J. Angew. Chem., Int. Ed. 2008, 47, 759; (j) Kang, Q.;
Zhao, Z.-A.; You, S.-L. Org. Lett. 2008, 10, 2031.
5. For selected examples: (a) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed.
2006, 45, 4796; (b) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006,
128, 13070; (c) Liu, H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Org. Lett.
2006, 8, 6023; (d) Akiyama, T.; Tamura, Y.; Itoh, J.; Morita, H.; Fuchibe, K. Synlett
2006, 141; (e) Gioia, C.; Hauville, A.; Bernardi, L.; Fini, F.; Ricci, A. Angew. Chem.,
Int. Ed. 2008, 47, 9236.
6. For selected examples: (a) Chen, X.-H.; Xu, X.-Y.; Liu, H.; Cun, L.-F.; Gong, L.-Z.
J. Am. Chem. Soc. 2006, 128, 14082; (b) Li, N.; Chen, X.-H.; Song, J.; Luo, S.-W.;
Fan, W.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131, 15301; (c) Akiyama, T.; Katoh, T.;
Mori, K. Angew. Chem., Int. Ed. 2009, 48, 4226.
Finally, one crucial question remains to be answered is why the
predominant factors that determine the overall enantioselectivities
are different in two very similar catalytic systems? We believe that
in the system of (S)-1b the two SiPh3 groups provide more com-
plete reaction pocket that embraces the substrates better, avoiding
external solvent effects. Thus the enantioselectivity of the reaction
is entirely controlled by the chiral discrimination to the transition
states of the catalyst itself. Given that Akiyama used (R)-1a in the
indole system to afford (R)-product, it is reasonable that in our
system the catalyst (S)-1b affords (S)-product with 4,7-dihy-
droindole as the nucleophile. However, the bulky substitution 9-
anthryl is less steric-demanding than SiPh3. Direct interactions
between 9-anthryl and the substrates should be diminished, giving
nearly identical DGgas for transition states accessing both enantio-
meric products. The relatively less shielded transition state struc-
tures permit more remarkable solvent effects to the whole systems,
and the enantioselectivity originates from this ‘external’ discrimi-
nation eventually.21
4. Conclusion
7. For selected examples: (a) Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2006,
128, 16448; (b) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317,
496; (c) Rueping, M.; Antonchick, A. P.; Brinkmann, C. Angew. Chem., Int. Ed. 2007,
46, 6903; (d) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336; (e) Hu, W.-
H.; Xu, X.-F.; Zhou, J.; Liu, W.-J.; Huang, H.-X.; Hu, J.; Yang, L.-P.; Gong, L.-Z. J. Am.
Chem. Soc. 2008, 130, 7782; (f) Li, C.-Q.; Wang, C.; Villa-Marcos, B.; Xiao, J.-L.
J. Am. Chem. Soc. 2008, 130, 14450; (g) Li, C.-Q.; Wang, C.; Villa-Marcos, B.; Xiao,
J.-L. J. Am. Chem. Soc. 2009, 131, 6967; (h) Sorimachi, K.; Terada, M. J. Am. Chem.
Soc. 2008, 130, 14452; (i) Terada, M.; Toda, Y. J. Am. Chem. Soc. 2009, 131, 6354; (j)
Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D. J.
J. Am. Chem. Soc. 2009, 131, 10796; (k) Cai, Q.; Zhao, Z.-A.; You, S.-L. Angew. Chem.,
Int. Ed. 2009, 48, 7428; (l) Zhang, Q.-W.; Fan, C.-A.; Zhang, H.-J.; Tu, Y.-Q.; Zhao,
Y.-M.; Gu, P.; Chen, Z.-M. Angew. Chem., Int. Ed. 2009, 48, 8572; (m) Liu, X.-Y.; Che,
C.-M. Org. Lett. 2009, 11, 4204.
In summary, density functional theory calculations have been
carried out on chiral phosphoric acid-catalyzed Friedel–Crafts re-
action of nitroolefin with 4,7-dihydrodindole/indole. 4,7-Dihy-
droindole is more nucleophilic than indole in the view of frontier
molecular orbital energies. Besides, the 11-membered ring transi-
tion structure also contributes to its high reactivity.
The reversal of the enantioselectivies in the Friedel–Crafts re-
action of 4,7-dihydroindole and nitroolefin caused by switch of
3,30-substituted groups was explained qualitatively. When the
catalyst (S)-1b was used, the transition state leading to (R)-product
suffered from slightly stronger repulsion between the 4,7-dihy-
droindole and one SiPh3 group of the catalyst, which results in the
moderate enantiomeric excess (S) observed experimentally.
Whereas for catalyst (S)-1c, the different solvent effects of the two
transition states became predominant, products of opposite con-
figuration (R) were obtained with high ees.
8. (a) Yamanaka, M.; Itoh, J.; Fuchibe, K.; Akiyama, T. J. Am. Chem. Soc. 2007, 129,
6756; (b) Simo´n, L.; Goodmann, J. M. J. Am. Chem. Soc. 2008, 130, 8741; (c) Si-
´
mon, L.; Goodmann, J. M. J. Am. Chem. Soc. 2009, 131, 4070; (d) Marcelli, T.;
Hammar, P.; Himo, F. Chem.dEur. J. 2008, 14, 8562; (e) Marcelli, T.; Hammar, P.;
Himo, F. Adv. Synth. Catal. 2009, 351, 525; (f) Yamanaka, M.; Hirata, T. J. Org.
Chem. 2009, 74, 3266; (g) Shi, F.-Q.; Song, B.-A. Org. Biomol. Chem. 2009, 7, 1292;
(h) Xu, S.; Wang, Z.; Li, Y.; Zhang, X.; Wang, H.; Ding, K. Chem.dEur. J., in press.
9. For reviews on asymmetric Friedel–Crafts reactions: (a) Bandini, M.; Melloni, A.;
Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550; (b) Bandini, M.; Melloni,
A.; Tommasi, S.; Umani-Ronchi, A. Synlett 2005, 1199; (c) Poulsen, T. B.; Jørgen-
sen, K. A. Chem. Rev. 2008, 108, 2903; (d) You, S.-L.; Cai, Q.; Zeng, M. Chem. Soc.
Rev. 2009, 38, 2190. After the acceptance of this manuscript, Goodman et al.
reported an excellent theoretical investigation into chiral phosphoric acid-cat-
Acknowledgements
We thank the National Natural Science Foundation of China
(20732006, 20821002, 20872168, 20932008), National Basic Re-
search Program of China (973 Program 2009CB825300) for gener-
ous financial support.
´
alyzed Friedel–Crafts reactions of various imines; (e) Simon, L.; Goodman, J. M.
J. Org. Chem. 2010, 75, 589.
10. For other literature reports in which the configuration of the final products
could be switched in chiral phosphoric-acid catalysis caused only by changes of
3,30-substitution group on the catalyst, please see: Ref. 2b,3e,4e,j,6a,b and
Wanner, M. J.; van der Haas, R. N. S.; de Cuba, K. R.; van Maarseveen, J. H.;
Hiemstra, H. Angew. Chem., Int. Ed. 2007, 46, 7485.
Supplementary data
11. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,
J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.;
Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.;
Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03
(Revision D.01); Gaussian: Wallingford, CT, 2004.
12. (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785; (b) Becke, A. D. Phys.
Rev. A 1988, 38, 3098; (c) Becke, A. D. J. Chem. Phys. 1992, 96, 2155; (d) Becke, A.
D. J. Chem. Phys. 1992, 97, 9173; (e) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
13. (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865; (b)
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.
14. Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 415.
15. (a) Cances, M. T.; Mennucci, V.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032; (b)
Cossi, M.; Barone, V.; Tomasi, J. J. Phys., Lett. 1998, 286, 253.
Supplementary data associated with this article can be found in
References and notes
1. Reviews on chiral phosphoric-acid catalysis: (a) Taylor, M. S.; Jacobsen, E. N.
Angew. Chem., Int. Ed. 2006, 45, 1520; (b) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv.
Synth. Catal. 2006, 348, 999; (c) Connon, S. J. Angew. Chem., Int. Ed. 2006, 45,
3909; (d) Akiyama, T. Chem. Rev. 2007, 107, 5744; (e) Yu, X.; Wang, W. Chem.
Asian J. 2008, 3, 516; (f) Terada, M. Chem. Commun. 2008, 4097.
2. For selected examples: (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew.
Chem., Int. Ed. 2004, 43, 1566; (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc.
2004, 126, 5356; (c) Guo, Q.-X.; Liu, H.; Guo, C.; Luo, S.-W.; Gu, Y.; Gong, L.-Z. J.
Am. Chem. Soc. 2007, 129, 3790; (d) Rueping, M.; Sugiono, E.; Schoepke, F. R.
Synlett 2007, 1441; (e) Gridnev, I. D.; Kouchi, M.; Sorimachi, K.; Terada, M.
Tetrahedron Lett. 2007, 48, 497; (f) Itoh, J.; Fuchibe, K.; Akiyama, T. Synthesis
2008, 1319.
3. For selected examples: (a) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem.
Soc. 2004, 126, 11804; (b) Jia, Y.-X.; Zhong, J.; Zhu, S.-F.; Zhang, C.-M.; Zhou, Q.-L.
Angew. Chem., Int. Ed. 2007, 46, 5565; (c) Terada, M.; Sorimachi, K. J. Am. Chem.
Soc. 2007, 129, 292; (d) Kang, Q.; Zhao, Z.-A.; You, S.-L. J. Am. Chem. Soc. 2007, 129,
1484; (e) Terada, M.; Yokoyama, S.; Sorimachi, K.; Uraguchi, D. Adv. Synth. Catal.
2007, 349, 1863; (f) Rowland, G. B.; Rowland, E. B.; Liang, Y.; Perman, J. A.; Antilla,
16. Chiral phosphoric acids used in the activation of carbonyl compounds, see: Ref.
6c and (a) Rueping, M.; Ieawsuwan, W.; Antonchick, A. P.; Nachtsheim, B. J.