28
J.-F. Li, Q.-Y. Chen / Spectrochimica Acta Part A 73 (2009) 25–28
of thermal analysis shows the existence of the dinuclear man-
ganese(II) complex (1).
which lead to the intramolecular aromatic hydroxylation. This
experimental result is helpful to understand the mechanisms of
oxygen transfer reactions catalyzed by non-heme dioxygenases.
The thermal decomposition of the [(pba)2Mn2(H2O)2(-Ac)2]
(Ac)2 (2) proceeds approximately with three decomposition steps.
There is no obvious weight loss in the 0–115 ◦C. The first step falls in
the range of 115–225 ◦C, which is assigned to loss of two coordinated
H2O molecules and two CH3COO− anions with a weight loss 16.11%
(calcd. 16.03%). The weight loss 44.72% in the range of 225–475 ◦C
is assigned to loss of four pyridylmethyl group (4pyCH2–) and one
CH3COO− anions (calcd. 44.65%). The final decomposition step in
the range of 475–900 ◦C corresponds to the loss of one benzyl amine
(phCH2NH2) with a weight loss 10.99% (calcd. 11.13%). The thermal
decomposition data obtained supports the proposed structure of
the complex (2).
Acknowledgements
Financial support from National Science Foundation of China
(20777029B0702), distinguished scholar science foundation of
Jiangsu University (06JDG050) and the foundation of State Key Lab-
oratory of Coordination Chemistry, Nanjing University.
References
[1] T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 105 (2005) 2329.
[2] W. Nam, Acc. Chem. Res. 40 (2007) 522.
[3] K.D. Koehntop, S. Marimanikkuppam, M.J. Ryle, R.P. Hausinger, LQ Jr., J. Biol.
Inorg. Chem. 11 (2006) 63.
[4] E.I. Solon, R. Sarangi, J.S. Woertink, A.J. Augustine, J. Yoon, S. Ghosh, Acc. Chem.
Res. 40 (2007) 581.
[5] T. Matsumoto, H. Furutachi, M. Kobino, M. Tomii, S. Nagatomo, T. Tosha, T.
Osako, S. Fujinami, S. Itoh, T. Kitagawa, M. Suzuki, J. Am. Chem. Soc. 128 (2006)
3874.
[6] A. Kunishita, J. Teraoka, J.D. Scanlon, T. Matsumoto, M. Suzuki, C.J. Cramer, S.
Itoh, J. Am. Chem. Soc. 129 (2007) 7248.
[7] E.M. McGarrigle, D.G. Gilheany, Chem. Rev. 105 (2005) 1563.
[8] J.R. Lindsay Smith, B.C. Gilbert, A.M. Payeras, J. Murray, T.R. Lowdon, J. Oakes,
R.P. Iprats, P.H. Walton, J. Mol. Catal. A: Chem. 251 (2006) 114.
[9] K. Nehru, S.J. Kim, I.Y. Kim, M.S. Seo, Y. Kim, S.-J. Kim, J. Kim, W. Nam, Chem.
Commun. (2007) 4623.
[10] M.S. Niassary, F. Farzanch, M. Ghandi, L. Turkian, J. Mol. Catal. A: Chem. 157
(2000) 18.
[11] I. Romero, L. Dubois, M.N. Collomb, A. Deronzier, J.M. Latour, J. Pecaut, Inorg.
Chem. 41 (2002) 1795.
[12] I. Romero, M.N. Collomb, A. Deronzier, A. Llobet, E. Perret, J. Pécaut, L.L. Pape,
J.M. Latour, J. Eur. Inorg. Chem. 1 (2001) 69.
[13] T.I.A. Gerber, J. Coord. Chem. 56 (2003) 1397.
Reaction of complexes (1) and (2) with H2O2 at 273 K (0 ◦C)
around 218 and 261 nm were assigned to –* and n–* intrali-
gand transition [18]. The addition of H2O2 to the complexes (1) and
(2) solution promoted an absorbance increase in the 200–800 nm
(Fig. 3(a)–(c)), typical of metal center oxidation [19]. The bands at
261 nm slowly increase with broadening while the bands at 218 nm
experience a slight increase in intensity with slight red shift. These
changes suggest the presence of a slight amount of a protonated
form, or the formation of a mixture of oxo bridged species on the
interaction of Mn complexes with H2O2 [20,21].
rebound or direct H2O2 insertion mechanism through the inter-
mediate for the benzylic hydroxylation reaction was proposed by
Itoh and co-workers, although such an intermediate could not be
detected at room temperature [21–25]. Intramolecular aromatic lig-
and hydroxylation was unambiguously confirmed by the modified
ligands pba-OH (m/z = 306) isolated by demetalation of the final
products (Table 2). The yield of hydroxylated ligand pba-OH was
evaluated as about 65% based on the manganese complex (1) by
comparing the dimension of the peak at 17 min (bpa) with that at
19 min (pba-OH) in HPLC.
[14] E.G. Bakalbassis, C.A. Tsipis, A.P. Bozopoulos, D.W. Dreissig, H. Hartl, J. Mrozinski,
Inorg. Chem. 30 (1991) 2801.
[15] P.S. Mukherjee, D. Ghoshal, E. Zangrando, T. Mallah, N.R. Chaudhuri, Eur. J. Inorg.
Chem. (2004) 4675.
[16] C.E. Xanthopoulos, M.P. Sigalas, G.A. Katsoulos, C.A. Tsipis, A. Terzis, A. Hountas,
Inorg. Chim. Acta 214 (1993) 153.
[17] R. Cao, Q. Shi, D. Sun, M. Hong, W. Bi, Y. Zhao, Inorg. Chem. 41 (2002) 6161.
[18] S. Chandra, S. Sharma, Trans. Met. Chem. 27 (2002) 732.
[19] M.R. Maurya, A.K. Chandrakar, S. Chand, J. Mol. Catal. A: Chem. 270 (2007)
225.
[20] S. Groni, G. Blain, R. Guillot, C. Policar, E.A. Mallart, Inorg. Chem. 46 (2007) 1951.
[21] M.R. Maurya, A.K. Chandrakar, S. Chand, J. Mol. Catal. A: Chem. 274 (2007) 192.
[22] S. Itoh, H. Nakao, L.M. Berreau, T. Kondo, M. Komatsu, S. Fukuzumi, J. Am. Chem.
Soc. 120 (1998) 2890.
[23] J.A. Halfen, V.G. Young Jr., W.B. Tolman, J. Am. Chem. Soc. 118 (1996) 10920.
[24] S. Mahapatra, S. Kaderli, A. Llobet, Y.M. Neuhold, T. Palanche, J.A. Halfen, V.G.
Young Jr., T.A. Kaden, L. Que Jr., A.D. Zuberbuhler, W.B. Tolman, Inorg. Chem. 36
(1997) 6343.
[25] S. Itoh, T. Kondo, M. Komatsu, Y. Ohshiro, C. Li, N. Kanehisa, Y. Kai, S. Fukuzumi,
J. Am. Chem. Soc. 117 (1995) 4714.
4. Conclusion
The dinuclear Mn(II) complexes of bis(2-pyridylmethyl)
benzylamine (bpa) could react with H2O2 resulting active oxidants,