alkyne molecules under iridium catalysis (X ) CO2H, Y )
H), which we recently succeeded in developing,5g seems to
be of considerable interest because of wide availability of
the acids as aryl sources.7
During our further study of the scope of this reaction, it
was found that heteroarene carboxylic acids such as 1-me-
thylindole-3-carboxylic acid hardly underwent the Ir-
catalyzed coupling with alkynes (Scheme 2, path a). Under
attractive synthesis targets in medicinal chemistry and
materials field, because of their biological activities as well
as photophysical and optoelectronic properties.9 Expectedly,
some of carbazoles obtained by this procedure have been
found to show solid-state fluorescence. The results obtained
with the new coupling reactions of not only indolecarboxylic
acids but also pyrrole-, benzofuran-, and furancarboxylic
acids are described herein.
We recently reported that 1-methylindole-3-carboxylic acid
(1a) smoothly underwent the oxidative coupling with alkenes
such as acrylates in the presence of Pd(OAc)2, Cu(OAc)2·
H2O, and LiOAc as catalyst, oxidant, and additive, respec-
tively.10 In an initial attempt, the reaction of 1a (0.8 mmol)
with diphenylacetylene (2a) (0.8 mmol) was conducted under
similar conditions, using Pd(OAc)2 (0.02 mmol), Cu(OAc)2·
H2O (0.8 mmol), LiOAc (1.2 mmol), and molecular sieves
(MS4A, 400 mg) in DMAc (10 mL) at 140 °C for 2 h under
N2 to afford 9-methyl-1,2,3,4-tetraphenyl-9H-carbazole (3a)
in 34% yield (entry 1 in Table 1). Other additives such as
Scheme 2
rhodium catalysis, meanwhile, a lactone was obtained as a
1:1 oxidative coupling product (path b).8 To our delight, the
desired 1:2 coupling has been observed to proceed efficiently
by the use of a palladium catalyst to produce the corre-
sponding 1,2,3,4-tetrasubstituted carbazole derivative selec-
tively (path c). Highly substituted carbazoles have been
Table 1. Reaction of 1-Methylindole-3-carboxylic Acid (1a)
with Diphenylacetylene (2a)a
entry 1a (mmol) additive T (°C) time (h) % yield of 3ab
(3) (a) Takahashi, T.; Li, S.; Huang, W.; Kong, F.; Nakajima, K.; Shen,
B.; Ohe, T.; Kanno, K.-I. J. Org. Chem. 2006, 71, 7967. (b) Takahashi, T.;
Li, Y.; Stepnicka, P.; Kitamura, M.; Liu, Y.; Nakajima, K.; Kotora, M.
J. Am. Chem. Soc. 2002, 124, 576. (c) Takahashi, T.; Kitamura, M.; Shen,
B.; Nakajima, K. J. Am. Chem. Soc. 2000, 122, 12876.
1c
2c
3c
4c
5
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.6
0.6
LiOAc
LiCl
140
140
140
140
140
120
100
120
120
120
2
4
2
2
2
6
8
6
9
8
34
21
4
24
64 (60)
99 (80)
61
86
99
Cs2CO3
NaOAc
LiOAc
LiOAc
LiOAc
LiOAc
LiOAc
LiOAc
(4) X) Y ) halogen: (a) Huang, W.; Zhou, X.; Kanno, K.-I.; Takahashi,
T. Org. Lett. 2004, 6, 2429. X ) OTf, Y ) SiMe3: (b) Yoshikawa, E.;
Radhakrishnan, K. V.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 7280.
(c) Pen˜a, D.; Pe´rez, D.; Guitia´n, E.; Castedo, L. J. Org. Chem. 2000, 65,
6944. (d) Pen˜a, D.; Pe´rez, D.; Guitia´n, E.; Castedo, L. J. Am. Chem. Soc.
1999, 121, 5827. (e) Pen˜a, D.; Escudero, S.; Pe´rez, D.; Guitia´n, E.; Castedo,
L. Angew. Chem., Int. Ed. 1998, 37, 2659.
6
7
8d
9
(5) X ) CrPh2, Y ) H: (a) Whitesides, G. M.; Ehmann, W. J. J. Am.
Chem. Soc. 1970, 92, 5625. (b) Herwig, W.; Metlesics, W.; Zeiss, H. J. Am.
Chem. Soc. 1959, 81, 6203. X ) I, Y ) H: (c) Kawasaki, S.; Satoh, T.;
Miura, M; Nomura, M. J. Org. Chem. 2003, 68, 6836. (d) Wu, G.;
Rheingold, A. L.; Feib, S. L.; Heck, R. F. Organometallics 1987, 6, 1941.
(e) Sakakibara, T.; Tanaka, Y.; Yamasaki, T.-I. Chem. Lett. 1986, 797. X
) COCl, Y ) H: (f) Yasukawa, T.; Satoh, T.; Miura, M.; Nomura, M.
J. Am. Chem. Soc. 2002, 124, 12680. X ) CO2H, Y ) H: (g) Ueura, K.;
Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362. X ) CR2OH, Y ) H:
(h) Uto, T.; Shimizu, M.; Ueura, K.; Tsurugi, H.; Satoh, T.; Miura, M. J.
Org. Chem. 2008, 73, 298. X ) Y ) H: (i) Umeda, N.; Tsurugi, H.; Satoh,
T.; Miura, M. Angew. Chem., Int. Ed. 2008, 47, 4019. (j) Wu, Y.-T.; Huang,
K.-H.; Shin, C.-C.; Wu, T.-C. Chem.sEur. J. 2008, 14, 6697.
10e
71
a Reaction conditions: [2a]/[Pd(OAc)2]/[Cu(OAc)2·H2O]/[additive] ) 0.8:
0.02:0.8:1.2 (in mmol), MS4A (400 mg) in DMAc (2.5 mL) under N2. b GC
yield based on the amount of 2a used. Value in parentheses indicates yield
afterpurification.c InDMAc(10mL).d InDMF(2.5mL).e 1-Methylindole-2-carbo-
xylic acid (1b) was used in place of 1a.
LiCl, Cs2CO3, and NaOAc were found to be less effective
than LiOAc (entries 2-4). In these cases, significant amounts
(6) Selected reviews: (a) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013.
(b) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41,
1013. (c) Ferreira, E. M.; Zhang, H.; Stoltz, B. M. Tetrahedron 2008, 64,
5987. (d) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41,
222. (e) Herrerias, C. I.; Yao, X.; Li, Z.; Li, C.-J. Chem. ReV. 2007, 107,
2546. (f) Alberico, D.; Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107,
174. (g) Godula, K.; Sames, D. Science 2006, 312, 67. (h) Satoh, T.; Miura,
M. J. Synth. Org. Chem. 2006, 64, 1199. (i) Conley, B. L.; Tenn, W. J.,
III; Young, K. J. H.; Ganesh, S. K.; Meier, S. K.; Ziatdinov, V. R.; Mironov,
O.; Oxgaard, J; Gonzales, J.; Goddard, W. A., III; Periana, R. A. J. Mol.
Catal. A 2006, 251, 8. (j) Miura, M.; Satoh, T. Top. Organomet. Chem.
2005, 14, 55. (k) Kakiuchi, F.; Chatani, N. AdV. Synth. Catal. 2003, 345,
1077. (l) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731.
(m) Miura, M.; Nomura, M. Top. Curr. Chem. 2002, 219, 211. (n) Kakiuchi,
F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. (o) Dyker, G. Angew. Chem.,
Int. Ed. 1999, 38, 1698. (p) Kakiuchi, F.; Murai, S. Top. Organomet. Chem.
1999, 3, 47. (q) Shilov, A. E.; Shul’pin, G. B. Chem. ReV. 1997, 97, 2879.
(7) For recent examples of the catalytic decarboxylation as well as
decarboxylative coupling reactions of carboxylic acids, see: (a) Miyasaka,
M.; Fukushima, A.; Satoh, T.; Hirano, K.; Miura, M. Chem.sEur. J. 2009,
15, 3674. (b) Huang, X.-C.; Wang, F.; Liang, Y.; Li, J.-H. Org. Lett. 2009,
11, 1139. (c) Duan, Z.; Ranjit, S.; Zhang, P.; Liu, X. Chem.sEur. J. 2009,
15, 3666. (d) Bi, H.-P.; Zhao, L.; Liang, Y.-M.; Li, C.-J. M. Angew. Chem.,
Int. Ed. 2009, 48, 792. (e) Sharma, A.; Kumar, R.; Sharma, N.; Kumar, V.;
Sinha, A. K. AdV. Synth. Catal. 2008, 350, 2910. (f) Goossen, L. J.;
Rodr´ıguez, N.; Linder, C. J. Am. Chem. Soc. 2008, 130, 15248. (g) Goossen,
L. J.; Zimmermann, B.; Knauber, T. Angew. Chem., Int. Ed. 2008, 47, 7103.
(h) Voutchkova, A.; Coplin, A.; Leadbeater, N. E.; Crabtree, R. H. Chem.
Commun. 2008, 6312. (i) Becht, J.-M.; Le Drian, C. Org. Lett. 2008, 10,
3161. (j) Nakano, M.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008,
10, 1851. For a recent review, see: (k) Goossen, L. J.; Rodr´ıguez, N.;
Goossen, K. Angew. Chem., Int. Ed. 2008, 47, 3100.
2338
Org. Lett., Vol. 11, No. 11, 2009