ORGANIC
LETTERS
2009
Vol. 11, No. 11
2401-2404
Synthetic Method for the Preparation of
2-Aminomethyl-1,3-diene Derivatives
through Indium-Mediated
1,3-Butadien-2-ylation of Imines
Dong Seomoon, Jaemyung A, and Phil Ho Lee*
National Research Laboratory for Catalytic Organic Reaction, Department of
Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon
National UniVersity, Chuncheon 200-701, Republic of Korea
Received March 13, 2009
ABSTRACT
An efficient method for the preparation of a variety of 2-aminomethyl-1,3-dienes was developed through the reaction of imines with organoindium
reagent generated in situ from indium and 1,3-dibromo-2-butyne. Three-component reactions of aldehydes, amines, and organoindium reagents
gave successful results in a one-pot process.
Carbon-carbon bond formation by nucleophilic addition of
carbon nucleophiles to imines is an important tool for
synthesizing complex biologically active nitrogen-containing
compounds.1 While addition of a variety of carbon nucleo-
philes to carbonyl compounds has been extensively inves-
tigated and well established, considerably less successful
results were obtained in the analogous reactions with imines.
The major problems are the relatively low reactivity of
unactivated imines toward nucleophilic addition and depro-
tonation of imines derived from enolizable carbonyl com-
pounds to form enamines. During the last decades, a variety
of carbon nucleophiles have been used in the addition
reaction of imines.2 However, the preparation of 2-amino-
methyl-1,3-diene derivatives through an addition reaction of
(1) (a) Enders, D.; Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895.
(b) Davis, F. A.; Zhou, P.; Chen, B.-C. Chem. Soc. ReV. 1998, 27, 13. (c)
Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D. Tetrahedron 2002,
58, 2253. (d) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res.
2002, 35, 984. (e) Alvaro, G.; Savoia, D. Synlett 2002, 651. (f) Zhou, P.;
Chen, B.; Davis, F. A. Tetrahedron 2004, 60, 8003. (g) Friestad, G. K.
Eur. J. Org. Chem. 2005, 3157.
(3) (a) Hosomi, A.; Masunari, T.; Tominaga, Y.; Hojo, M. Bull. Chem.
Soc. Jpn. 1991, 64, 1051. (b) Sheares, V. V.; Wu, L.; Li, Y.; Emmick,
T. K. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 4070.
(4) Jones, G. D.; Meyer, W. C.; Tefertiller, N. B.; MacWilliams, D. C.
J. Polym. Sci. 1970, 8, 2123.
(2) (a) Beuchet, P.; Marrec, N. L.; Mosset, P. Tetrahedron Lett. 1992,
33, 5959. (b) Yamamoto, Y.; Asao, N. Chem. ReV. 1993, 93, 2207. (c)
Basile, T.; Bocoum, A.; Savoia, D.; Umani-Ronichi, A. J. Org. Chem. 1994,
59, 7766. (d) Bloch, R. Chem. ReV. 1998, 98, 1407. (e) Kobayashi, S.;
Ishitani, H. Chem. ReV. 1999, 99, 1069. (f) Lu, W.; Chan, T. H. J. Org.
Chem. 2000, 65, 8589. (g) Lu, W.; Chan, T. H. J. Org. Chem. 2001, 66,
3467. (h) Yanada, R.; Kaieda, A.; Takemoto, Y. J. Org. Chem. 2001, 66,
7516. (i) Lee, J. G.; Choi, K. I.; Pae, A. N.; Koh, H. Y.; Kang, Y.; Cho,
Y. S. J. Chem. Soc., Perkin Trans. 1 2002, 1314. (j) Miyabe, H.; Yamaoka,
Y.; Naito, T.; Takemoto, Y. J. Org. Chem. 2004, 69, 1415. (k) Yamada,
K.-I.; Tomioka, K. Chem. ReV. 2008, 108, 2874.
(5) Coulson, D. R. J. Org. Chem. 1973, 38, 1483.
(6) Castagnolo, D.; Renzulli, M. L.; Galletti, E.; Corelli, F.; Botta, M.
Tetrahedron: Asymmetry 2005, 16, 2893.
(7) (a) Carruthers, W. Cycloaddition Reactions in Organic Synthesis;
Pergamon Press: Oxford, U.K., 1990. (b) Oppolzer, W. In ComprehensiVe
Organic Synthesis; Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon
Press: Oxford, U.K., 1991; Vol. 5, p 315. (c) Kappe, C. O.; Murphree,
S. S.; Padwa, A. Tetrahedron 1997, 53, 14179. (d) Marsault, E.; Toro´, A.;
Nowak, P.; Deslongchamps, P. Tetrahedron 2001, 57, 4243. (e) Nicolaou,
K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem.,
Int. Ed. 2002, 41, 1668.
10.1021/ol9005213 CCC: $40.75
Published on Web 05/07/2009
2009 American Chemical Society