ORGANIC
LETTERS
2009
Vol. 11, No. 11
2285-2288
Manganese(III)-Mediated Transformations
of Phloroglucinols: A Formal Oxidative
[4 + 2] Cycloaddition Leading to
Bicyclo[2.2.2]octadiones
Branko Mitasev and John A. Porco, Jr.*
Department of Chemistry and Center for Chemical Methodology and Library,
DeVelopment (CMLD-BU), Boston UniVersity, Boston, Massachusetts 02215
Received March 20, 2009
ABSTRACT
Manganese(III)-mediated oxidative transformations of dearomatized phloroglucinol (1,3,5-trihydroxybenzene) derivatives are reported. A number
of cyclization modes have been observed, including polycyclization to afford bicyclo[2.2.2]octadiones via a formal oxidative radical [4 + 2]
cycloaddition.
Oxidative transformations involving an enolized carbonyl
moiety have significantly attracted the attention of synthetic
chemists. Metal ions such as Mn(III), Cu(II), Fe(III), and
Ce(IV) are well-known for their potential to extract electrons
from electron-rich enols and enolates generally resulting in
the formation of an electrophilic R-carbonyl radical. This
general reactivity has found numerous synthetic applications.
Examples include Mn(III)-mediated oxidative free radical
cyclizations,1 Mn(III)-mediated cycloadditions,2 R-acetoxy-
lation3 and arylation,1b,4 and Fe(III)- or Cu(II)-mediated
enolate hetero-5 and homocoupling.6 Some of these methods
have found use in the synthesis of complex natural product
targets and medicinal agents.7 Mn(III)-based oxidative radical
cyclizations of carbonyl compounds onto unactivated olefins,
extensively studied by Snider and others,1,8 are particularly
attractive for their potential to rapidly generate molecular
complexity.
Our laboratory has a continuing interest in dearomatization
of electron-rich aromatic compounds in the synthesis of
(4) Bhowmik, D. R.; Venkateswaran, R. V. Tetrahedron Lett. 1999, 40,
7439
.
(1) (a) Snider, B. B.; Patricia, J. J.; Kates, S. A. J. Org. Chem. 1988,
53, 2137. (b) Kates, S. A.; Dombroski, M. A.; Snider, B. B. J. Org. Chem.
1990, 55, 2425. (c) Snider, B. B.; McCarthy, B. A. J. Org. Chem. 1993,
58, 6217. (d) Snider, B. B. Chem. ReV. 1996, 96, 339. (e) Cole, B. M.;
Han, L.; Snider, B. B. J. Org. Chem. 1996, 61, 7832.
(5) (a) Baran, P. S.; DeMartino, M. P. Angew. Chem., Int. Ed. 2006,
45, 7083. (b) DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc.
2008, 130, 11546.
(6) (a) Rathke, M. W.; Lindert, A. J. Am. Chem. Soc. 1971, 93, 4605.
(b) Ito, Y.; Konoike, T.; Saegusa, T. J. Am. Chem. Soc. 1975, 97, 2912. (c)
Frazier, R. H., Jr.; Harlow, R. L. J. Org. Chem. 1980, 45, 5408–5411.
(7) (a) Snider, B. B.; Mohan, R.; Kates, S. A J. Org. Chem. 1985, 50,
3659. (b) Paquette, L. A.; Schaefer, A. G.; Springer, J. P. Tetrahedron 1987,
43, 5567. (c) Pettus, T. R. R.; Inoue, M.; Chen, X. T.; Danishefsky, S. J.
J. Am. Chem. Soc. 2000, 122, 6160. (d) Nicolaou, K. C.; Gray, D. L. F.
J. Am. Chem. Soc. 2004, 126, 607. (e) Baran, P. S.; Richter, J. M.; Lin,
D. W. Angew. Chem., Int. Ed. 2005, 44, 609.
(2) (a) Melikyan, G. G. Synthesis 1993, 833. (b) Mellor, J. M.;
Mohammed, S. Tetrahedron 1993, 49, 7557. (c) Snider, B. B.; Han, L.;
Xie, C. J. Org. Chem. 1997, 62, 6978. (d) Chowdhury, F. A.; Nishino, H.;
Kurosawa, K. Tetrahedron Lett. 1998, 39, 7931. (e) Tsai, A.-I.; Lin, C.-H.;
Chuang, C.-P. Heterocycles 2005, 65, 2381.
(3) (a) Williams, G. J.; Hunter, N. R. Can. J. Chem. 1976, 54, 3830.
(b) Dunlap, N. K.; Sabol, M. R.; Watt, D. S. Tetrahedron Lett. 1984, 25,
5839. (c) Gross, R. S.; Kawada, K.; Kim, M.; Watt, D. S. Synth. Commun.
1989, 19, 1127. (d) Tanyeli, C.; Sezen, B.; Iyigun, C.; Elmali, O.
Tetrahedron Lett. 2001, 42, 6397.
(8) (a) Corey, E. J.; Kang, M. C. J. Am. Chem. Soc. 1984, 106, 5384.
(b) Ernst, A. B.; Fristad, W. E. Tetrahedron Lett. 1985, 26, 3761. (c) Yang,
D.; Ye, X.-Y.; Gu, S.; Xu, M. J. Am. Chem. Soc. 1999, 121, 5579
.
10.1021/ol900590t CCC: $40.75
Published on Web 05/05/2009
2009 American Chemical Society