J. Zhao et al. / Tetrahedron Letters 50 (2009) 2758–2761
2761
Ag
Acknowledgments
AgOAc
Pd(0)
Pd(OAc)2
Funding from Zhejiang Provincial Natural Science Foundation of
China (R407106) and Natural Science Foundation of China (No.
205710631) is acknowledged.
X
HOAc
References and notes
1. (a) Roncali, J. Chem. Rev. 1997, 97, 173–205; (b) Mitschke, U.; Bauerle, P. J.
Mater. Chem. 2000, 10, 1471–1507; (c) Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem.
Res. 2001, 34, 359–369; (d) Nesterov, E. E.; Skoch, J.; Hyman, B. T.; Klunk, W. E.;
Bacskai, B. J.; Swager, T. M. Angew. Chem., Int. Ed. 2005, 44, 5452–5456.
2. (a) Jiang, B.; Dou, Y.; Xu, X. Y.; Xu, M. Org. Lett. 2008, 10, 593–596; (b) Molander,
G. A.; Oliveira, R. A. Tetrahedron Lett. 2008, 49, 1266–1268; (c) El-Batta, A.;
Jiang, C. C.; Zhao, W.; Anness, R.; Cooksy, A. L.; Bergdahl, M. J. Org. Chem. 2007,
72, 5244–5259; (d) Thiemann, T.; Watanabe, M.; Tanaka, Y.; Mataka, S. New J.
Chem. 2006, 30, 359–369.
3. (a) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945–2963; (b)
Ehrentraut, A.; Zapf, A.; Beller, M. Synlett 2000, 1589–1592; (c) Morales-
Morales, D.; Redon, R.; Yung, C.; Jensen, C. M. Chem. Commun. 2000, 1619–
1620; (d) Ostermeier, M.; Prieb, J.; Helmchen, G. Angew. Chem., Int. Ed. 2002, 41,
612–614; (e) Schnyder, A.; Aemmer, T.; Indolese, A. F.; Pittelkow, U.; Studer, M.
Adv. Synth. Catal. 2002, 344, 495–498; (f) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc.
2001, 123, 6989–7000.
PdOAc
X
1
HPdOAc
R
X
PdOAc
R
X
R
2
Scheme 2.
4. (a) Cai, G.; Fu, Y.; Li, Y.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 7666–7673;
(b) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de
Vries, J. G.; van Leeuwen, P. W. N. M. J. Am.Chem. Soc. 2002, 124, 1586–1587; (c)
Zaitsev, V. G.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 4156–4157; (d) Dams,
M.; De Vos, D. E.; Celen, S.; Jacobs, P. A. Angew. Chem., Int. Ed. 2003, 42, 3512–
3515.
effect on the reactions and good yields were obtained with both
electron-withdrawing and electron-donating groups under the
reaction conditions (Table 2, entries 5–8). 2-(Naphthalen-1-yl)thi-
ophene gave the corresponding coupling product in 80% yield (Ta-
ble 2, entry 9). It should be noted that benzo[b]thiophene reacted
equally efficiently to yield the expected product in very good yield
(Table 2, entry 10). The coupling reaction worked smoothly with
the diverse acrylate such as t-butyl acrylate (Table 2, entries 11
5. Fujiwara, Y.; Maruyama, O.; Yoshidomi, M.; Taniguchi, H. J. Org. Chem. 1981, 46,
851–855.
6. (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633–639; (b)
Fujiwara, Y.; Asano, R.; Moritani, I.; Teranishi, S. J. Org. Chem. 1976, 41, 1681–
1683; (c) Akiyama, F.; Miyazaki, H.; Kaneda, K.; Teranishi, S.; Fujiwara, Y.; Abe,
M.; Taniguchi, H. J. Org. Chem. 1980, 45, 2359–2361; (d) Fujiwara, Y.; Noritani,
I.; Danno, S.; Asano, R.; Teranishi, S. J. Am. Chem. Soc. 1969, 91, 7166–7169; (e)
Kitamura, T.; Yamane, M.; Inoue, K.; Todaka, M.; Fukatsu, N.; Meng, Z.;
Fujiwara, Y. J. Am. Chem. Soc. 1999, 121, 11674–11679.
7. (a) Hatamoto, Y.; Sakaguchi, S.; Ishii, Y. Org. Lett. 2004, 6, 4623–4625; (b)
Yamada, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2005, 70, 5471–5474; (c) Yokota,
T.; Tani, M.; Sakaguchi, S.; Ishii, Y. J. Am. Chem. Soc. 2003, 125, 1476–1477.
8. Tani, M.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2004, 69, 1221–1226.
9. Maehara, A.; Satoh, T.; Miura, M. Tetrahedron 2008, 64, 5982–5986.
10. (a) GooBen, L. J.; Paetzold, J. Angew. Chem., Int. Ed. 2002, 41, 1237–1241; (b)
Maehara, A.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008, 10, 1159–1162; (c)
Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250–
11251.
11. (a) Beletskay, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066; (b)
Moreno-Manas, M.; Perea, M.; Pleixats, R. Tetrahedron Lett. 1996, 37, 7449–
7452; (c) Guertler, C.; Buchwald, S. L. Chem. Eur. J. 1999, 5, 3107–3112.
12. (a) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem.
Soc. Jpn. 1998, 71, 467–473; (b) Beck, E. M.; Grimster, N. P.; Hatley, R.; Gaunt,
M. J. J. Am. Chem. Soc. 2006, 128, 2528–2529; (c) Garg, N. K.; Caspi, D. D.; Stoltz,
B. M. J. Am. Chem. Soc. 2004, 126, 9552–9553; (d) Zhang, H. M.; Ferreira, E. M.;
Stoltz, B. M. Angew. Chem., Int. Ed. 2004, 43, 6144–6148.
and 12). N,N-Dimethylacrylamide was also found to be compatible
with the coupling reaction, and gave the desired products in good
yields (Table 2, entries 13–15). In the case of acrylnitrile, the yields
decreased (Table 2, entries 16 and 17). In addition, Z and E isomers
were produced at a ratio of 1:2, which is possibly because CN group
is relatively small and makes the energy of Z- and E-isomer transi-
tion state of b-hydro elimination closer.5,11 However, the reactions
of thiophene bearing electron-withdrawing substitutes such as
acyl and ester groups were sluggish, indicating that the reaction
might undergo an electrophilic metalation processes.12
The coupling reaction works well with furans (Table 2, entries
18–21). Furan and 2-methyl furan reacted with n-butyl acrylate
efficiently and afforded the expected coupling products in high
yields. N,N-Dimethylacrylamide was also a good coupling partner
and good yields were delivered.
Because the thiophenes bearing electron-withdrawing groups
are inactive under the reaction conditions, we suppose that an
electrophilic metalation mechanism is favored as shown in Scheme
2.5,9,13 Initially, the electronic attack of Pd(II) into thiophene forms
the intermediate 1, which inserts into olefins to afford the interme-
diate 2. The subsequent b–hydro elimination results in the product
and liberates Pd(0) as well as acetic acid. The Pd(II) is regenerated
from the oxidation of Pd(0) by silver(I) compounds.
In conclusion, we have developed an efficient and new method
for the coupling of thiophenes and furans with various olefins
through palladium-mediated direct alkenation in conjunction with
AgOAc and pyridine.14 The method provides the desired products
in good yields, and in most cases, high regio- and stereoselectivi-
ties are presented. Studies to expand the substrate scope of the
method are currently in progress in our laboratory.
13. (a) Grimster, N. P.; Godfrey, C. D.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 44,
3125–3129; (b) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127,
8050–8057.
14. General procedure: A mixture of acrylates or acrylamide (0.5 mmol), Pd(OAc)2
(11 mg, 10 mol%), thiophenes or furans (2 mmol), AgOAc (1 mmol), pyridine
(2 mmol), DMF (1 mL) was sealed with lined cap and stirred at 120 °C for 12 h.
Afterward, CH2Cl2 (45 mL) was added to the reaction mixture, and then
washed with deionized water (3 Â 15 mL), dried with Na2SO4 and
concentrated. The residue was purified by flash column chromatography to
afford the corresponding products (E)-butyl 3-(5-methoxythiophen-2-
yl)acrylate. The product was obtained as brown oil (Rf = 0.33 in 91%
petroleum ether/9% EtOAc). 1H NMR (400 MHz, CDCl3, TMS) d 7.62 (d, 1H,
J = 15.6 Hz), 6.92 (d, 1H, J = 4.0 Hz), 6.15 (d, 1H, J = 4.0 Hz), 5.93 (d, 1 H,
J = 15.6 Hz), 4.16 (t, 2H, J = 6.6 Hz), 3.92 (s, 3H), 1.62–1.70 (m, 2H), 1.37–1.47
(m, 2H), 0.95 (t, 3H, J = 7.0 Hz). 13C NMR (CDCl3, 100 MHz): d 169.0, 167.2,
138.1, 130.9, 126.2, 113.1, 104.8, 64.1, 60.1, 30.8, 19.1, 13.7. MS (EI): m/z (%):
242 (7) [M++2], 241 (15) [M++1], 240 (100) [M+], 184 (69), 167 (82), 140 (61).
HRMS (EI): Calcd for C12H16O3S: [M+] 240.0816. Found: 240.0820.