Mendeleev Commun., 2008, 18, 241–243
and TBS substituents (entries 10, 11) were used. The smaller
Similarly to tri-O-acetylated 1a, the APS transformations
of peracetylated di- and trisaccharide derivatives 1m9 and 1p
were non-stereoselective (entries 12, 15), but the transformation
of their per-O-silylated analogues 1n,10 1o10 and 1q gave only
gluco-products 2n,o,q contrary to the corresponding mono-
saccharide analogues 1i and 1j (entries 8, 9).
silyl protections (TMS and TES groups) provided remarkably
lower stereoselectivity (entries 8, 9), but the portion of gluco-
product was higher in the case of substrate 1i with the TMS
substituent.
2p: 1H NMR, d: 7.20–7.70 (m, 5H, Ar), 5.99 (d, 1H, H-1, J1,2 5.2 Hz),
5.50 (m, 1H, H-8''), 5.38 (dd, 1H, H-7'', J7'',6'' 2.2 Hz, J7'',8'' 9.1 Hz), 5.36
(d, 1H, H-4', J4,3 3.2 Hz), 5.11 (m, 2H, H-2', NH), 4.92 (dd, 1H, H-3',
J3,2 9.1 Hz, J3,4 3.0 Hz), 4.80 (m, 1H, H-4''), 4.57 (dd, 1H, H-2, J2,1 6.0 Hz,
J2,3 2.0 Hz), 4.44 (d, 1H, H-1', J1,2 8.0 Hz), 4.40 (m, 1H, H-3), 4.37 (m,
1H, H-6A), 4.20 (m, 4H, H-6'A, H-6'B, H-9A'', H-9B''), 4.03 (m, 2H,
H-6B, H-5''), 3.81 (m, 1H, H-5'), 3.72 (s, 3H, OMe), 3.70 (m, 2H, H-4,
H-5), 3.55 (d, 1H, H-6'', J6,7 2.1 Hz), 2.47 (dd, 1H, H-3eq, J3,3 12.5 Hz,
J3,4 4.3 Hz), 1.68 (t, 1H, H-3eq, J3,3 = J3,4 = 12.3 Hz), 1.90–2.25 (m, 30H,
Ac). 13C NMR, d: 126.5–131.0 (Ar), 126.5–131.0 (Ar), 100.4 (C-1'), 97.3
(C-2'') 83.2 (C-1), 77.9, 75.3, 75.2, 74.0, 72.8, 71.9, 71.6, 71.5, 70.5, 68.6,
65.7, 63.2, 62.7, 62.3, 61.2 (C-2), 54.9 (C-5''), 39.9 (C-3''), 19.3–21.6 (Ac).
2q: 1H NMR, d: 7.20–7.70 (m, 5H, Ar), 5.95 (d, 1H, H-1, J1,2 5.0 Hz),
4.02 (m, 2H), 3.94 (m, 1H, H-2), 3.81–3.96 (m, 10H), 3.79 (m, 1H, H-3),
3.72–3.78 (m, 5H), 2.42 (dd, 1H, H-3eq, J3,3 12.8 Hz, J3,4 4.1 Hz), 1.75
(t, 1H, H-3eq, J3,3 = J3,4 = 12.9 Hz), 0.80–1.10 (m, 135H, Et). 13C NMR,
d: 133.1–127.4 (Ar), 100.4 (C-2''), 100.3 (C-1'), 98.1 (C-2''), 84.1 (C-1),
74.0, 73.2, 71.5, 71.0, 70.5, 70.1, 69.1, 66.3, 63.1, 62.4, 60.1, 56.2, 53.0,
39.2 (C-3''), 10.4–12.7 (Et), 0.4–2.9 (Et).
3m: 1H NMR, d: 7.20–7.70 (m, 5H, Ar), 5.72 (d, 1H, H-1, J1,2 1.4 Hz),
5.37 (d, 1H, H-4', J4',3' 3.5 Hz), 5.32 (dd, 1H, H-3, J3,2 9.0 Hz, J3,4 3.2 Hz),
5.15 (dd, 1H, H-2', J2',1' 8.0 Hz, J2',3' 10.0 Hz), 4.97 (dd, 1H, H-3', J3',2'
10.0 Hz, J3',4' 3.4 Hz), 4.55 (d, 1H, H-1', J1',2' 8.0 Hz), 4.36 (m, 3H,
H-6A, H-6'A, H-6'B), 4.30 (m, 1H, H-2), 4.05 (m, 2H, H-5', H-6B), 3.93
(m, 2H, H-4, H-5), 2.00–2.20 (6s, 18H, Ac). 13C NMR, d: 169.6–170.9
(C=O), 137.5 (ipso-Ph), 126.5–131.0 (Ar), 101.2 (C-1'), 82.2 (C-1), 74.0,
71.6, 71.5, 70.8, 70.5, 68.9, 66.5, 63.1, 62.0, 60.8, 19.6–22.0 (Ac).
3p: 1H NMR, d: 7.20–7.70 (m, 5H, Ar), 5.99 (d, 1H, H-1, J1,2 5.2 Hz),
5.50 (m, 1H, H-8''), 5.38 (dd, 1H, H-7'', J7'',6'' 2.2 Hz, J7'',8'' 9.1 Hz), 5.36
(d, 1H, H-4', J4,3 3.2 Hz), 5.11 (m, 2H, H-2', NH), 4.92 (dd, 1H, H-3',
J3,2 9.1 Hz, J3,4 3.0 Hz), 4.80 (m, 1H, H-4''), 4.57 (dd, 1H, H-2, J2,1 6.0 Hz,
J2,3 2.0 Hz), 4.44 (d, 1H, H-1', J1,2 8.0 Hz), 4.40 (m, 1H, H-3), 4.37 (m,
1H, H-6A), 4.20 (m, 4H, H-6'A, H-6'B, H-9A'', H-9B''), 4.03 (m, 2H,
H-6B, H-5''), 3.81 (m, 1H, H-5'), 3.72 (s, 3H, OMe), 3.70 (m, 2H, H-4,
H-5), 3.55 (d, 1H, H-6'', J6,7 2.1 Hz), 2.47 (dd, 1H, H-3eq, J3,3 12.5 Hz,
J3,4 4.3 Hz), 1.68 (t, 1H, H-3eq, J3,3 = J3,4 = 12.3 Hz), 1.90–2.25 (m, 30H,
Ac). 13C NMR, d: 169.6–171.4 (C=O), 126.5–131.0 (Ar), 101.5 (C-2),
100.4 (C-1'), 97.3 (C-2''), 75.3, 75.2, 74.0, 72.8, 71.9, 71.6, 71.5, 70.8,
70.5, 68.9, 66.1, 64.4, 62.5, 62.8, 60.0 (C-2), 53.9 (C-5''), 39.1 (C-3''),
19.3–21.7 (Ac).
Synthesis of glucals 1p and 1q using known procedures11–14
will be published elsewhere.
In conclusion, we have demonstrated that the stereoselec-
tivity in the APS reaction of glucals depends on O-protecting
groups in the glucal that gives the possibility to direct to a certain
extent the stereochemical result of the reaction towards the
formation of either gluco- or manno-products.
This work was supported by the Russian Foundation for
Basic Research (grant no. 07-03-00225). A.A.S. acknowledges
the support of INTAS (YS fellowship grant no. 03-55-1026). We
are grateful to Yu. E. Tsvetkov, L. O. Kononov and A. I. Zinin
for helpful discussions and to A. S. Shashkov and A. A. Grachev
for recording the NMR spectra.
References
1
2
J. Boullanger and D. Lafont, Chem. Rev., 1992, 92, 1167.
(a) R. U. Lemieux and R. M. Ratcliffe, Can. J. Chem., 1979, 57, 1244;
(b) P. H. Seeberger, S. Rochrig, P. Schell, Y. Wang and W. J. Christ,
Carbohydr. Res., 2000, 328, 61; (c) N. V. Bovin, S. E. Zurabyan and
A. Ya. Khorlin, Carbohydr. Res., 1981, 98, 25; (d) A. Vassella, Ch. Witzig,
J.-L. Chiara and M. Martin-Lomas, Helv. Chim. Acta, 1991, 74, 2073.
(a) M. Tingoli, M. Tiecco, D. Chianelli, R. Balducci and A. Temperini,
J. Org. Chem., 1991, 56, 6809; (b) M. Tingoli, M. Tiecco, L. Testaferri
and A. Temperini, J. Chem. Soc., Chem. Commun., 1994, 1883;
(c) S. Czernecki, E. Ayadi and D. Randriamandimby, J. Org. Chem.,
1994, 59, 8256; (d) S. Czernecki and D. Randriamandimby, Tetrahedron
Lett., 1993, 34, 7915; (e) F. Santoyo-Gonzales, F. G. Calvo-Flores,
P. Garcia-Mendoza, F. Hernandez-Mateo, J. Isac-Garcia and R. Robles-
Diaz, J. Org. Chem., 1993, 58, 6122.
3
4
5
6
7
Yu. V. Mironov, A. A. Sherman and N. E. Nifantiev, Tetrahedron Lett.,
2004, 45, 9107.
(a) P. J. Stang and V. V. Zhdankin, Chem. Rev., 1996, 96, 1123;
(b) V. V. Zhdankin and P. J. Stang, Chem. Rev., 2002, 102, 2523.
V. V. Zhdankin, C. J. Kuehl, A. P. Krasutsky, M. S. Formaneck and
J. T. Bolz, Tetrahedron Lett., 1994, 35, 9677.
D. J. Chambers, G. R. Evans and A. J. Fairbanks, Tetrahedron Lett.,
2003, 44, 5221 and references cited therein.
8
9
J.-P. Lellouche and S. Koeller, J. Org. Chem., 2001, 66, 693.
W. N. Haworth, E. L. Hirst, H. R. L. Streight, H. A. Thomas and J. I. Webb,
J. Chem. Soc., 1930, 2636.
5 (in the mixture with 6, see entries 22 and 23, Table 1): 1H NMR, d:
7.10–8.10 (m, 4H, Ar), 5.81 (d, 1H, H-1, J1,2 9.4 Hz), 5.17 (t, 1H, H-3,
J3,2 = J3,4 = 9.1 Hz), 5.08 (t, 1H, H-4, J4,3 = J4,5 = 9.1 Hz), 4.30 (m, 1H,
H-6), 4.06 (dd, 1H, H-6', J5,6' 2.2 Hz, J6',6 12.5 Hz), 3.74 (ddd, 1H, H-5,
J5,4 8.9 Hz, J5,6 2.3 Hz, J5,6' 4.6 Hz), 3.41 (t, 1H, H-2, J2,1 = J2,3 = 9.2 Hz),
1.95–2.20 (3s, 9H, Ac). 13C NMR, d: 170.0–174.2 (C=O), 127.8–141.8
(Ar), 94.4 (C-1), 93.4 (C-I), 72.4 (C-5), 72.2 (C-3), 69.2 (C-4), 61.7 (C-6),
46.3 (C-2), 20.7 (Ac).
6 (in the mixture with 5, see entries 22 and 23, Table 1): 1H NMR, d:
7.10–8.10 (m, 4H, Ar), 6.68 (d, 1H, H-1, J1,2 1.5 Hz) 5.55 (m, 2H, H-3,
H-4), 4.45 (m, 1H, H-6), 4.20 (m, 2H, H-5, H-6'), 4.08 (dd, 1H, H-2,
J2,1 = 1.8 Hz, J2,3 3.8 Hz), 1.95–2.20 (3s, 9H, Ac). 13C NMR, d: 170.0–174.2
(C=O), 127.8–141.8 (Ar), 95.6 (C-1), 94.6 (C-I), 71.6 (C-5), 70.7 (C-4),
66.6 (C-3), 46.4 (C-2), 20.7 (Ac).
10 K. K.-C. Liu and S. J. Danishefsky, J. Am. Chem. Soc., 1993, 115, 4933.
11 E. A. Khatuntseva, O. N. Yudina, Yu. E. Tsvetkov, A. A. Grachev, R. N.
Stepanenko, R. Ya. Vlasenko, V. L. Lvov and N. E. Nifantiev, Izv.
Akad. Nauk, Ser. Khim., 2006, 2016 (Russ. Chem. Bull., Int. Ed.. 2006,
55, 2095).
12 B. R. Castro, Org. React., 1983, 29, 1.
13 J. Broddefalk, U. Nilsson and J. Kihlberg, J. Carbohydr. Chem., 1994,
13, 129.
14 A. A. Sherman, O. N. Yudina, B. S. Komarova, Yu. E. Tsvetkov, S. Iacobelli
and N. E. Nifantiev, Synthesis, 2005, 1783.
Received: 16th July 2008; Com. 08/3182
– 243 –