that these reagents are configurationally unstable above -78
°C, they add smoothly to aldehydes at this temperature to
provide the desired alcohols in g98% de and 88-92% ee.
Numerous synthetic applications for γ-methoxyallylboration
have been found for the synthesis of highly oxygenated
natural products.6 To assess the potential of BBD reagents
to enhance the value of this important process, it was decided
to prepare the (Z)-(γ-methoxyallyl)-10-TMS-9-BBD reagents
(1) and evaluate their behavior in the methoxyallylboration
of aldehydes and aldimines.
Scheme 1
Allyl methyl ether is metalated with sec-butyllithium in
THF at -78 °C (Scheme 1).7 The resulting cis-organolithium
reagent 3 is treated with either enantiomeric form of
B-methoxy-10-trimethylsilyl-9-BBD (4) at -78 °C, giving
the organoborate complex 5 that reacts with TMSCl to
generate 1 in 85% yield. Representative aldehydes were
added to 1 in THF at -78 °C to produce 6 (see Supporting
Information), which was treated with the appropriate pseu-
doephedrine to provide 8 and the threo-ꢀ-methoxyhomoallyl
alcohols 7 in 65-96% yield with excellent diastereoselec-
tivity (96-99%) and optical purity (98-99% ee). These
results are summarized in Table 1.
Table 1. Asymmetric γ-Methoxyallylboration of Representative
Aldehydes with 1
(5) Alexakis, A.; Furtos, J. C.; Mutti, S.; Mangeney, P. J. Org. Chem.
1994, 59, 3326.
7a
8
eeb
de
abs configc
(6) (a) Smith, A. L.; Pitsinos, E. N.; Hwang, C. K.; Mizuno, Y.; Saimoto,
H.; Scarlato, G. R.; Suzuki, T.; Nicolaou, K. C. J. Am. Chem. Soc. 1993,
115, 7612. (b) Ramachandran, P. V.; Chandra, J. S.; Reddy, M. V. R. J.
Org. Chem. 2002, 67, 7547. (c) Ramachandran, P. V.; Prabhudas, B.;
Pratithar, D.; Chandra, J. S.; Reddy, M. V. R. Tetrahedron Lett. 2003, 44,
3745. (d) Maddess, M. L.; Tackett, M. N.; Watanabe, H.; Brennan, P. E.;
Spilling, C. D.; Scott, J. S.; Osborn, D. P.; Ley, S. V. Angew. Chem., Int.
Ed. 2007, 46, 591. (e) Nicolaou, K. C.; Guduru, R.; Sun, Y.-P.; Banerji,
B.; Chen, D. Y.-K. Angew. Chem., Int. Ed. 2007, 46, 5896. (f) Castoldi,
D.; Caggiano, L.; Panigada, L.; Sharon, O.; Costa, A. M.; Gennari, C.
Angew. Chem., Int. Ed. 2005, 44, 588. (g) Coleman, R. S.; Li, J.; Navarro,
A. Angew. Chem., Int. Ed. 2001, 40, 1736. (h) Liao, X.; Wu, Y.; De
Brabander, J. K. Angew. Chem., Int. Ed. 2003, 42, 1648. (i) Yin, N.; Wang,
G.; Qian, M.; Negishi, E. Angew. Chem., Int. Ed. 2006, 45, 2916. (j)
Ramachandran, P. V.; Chandra, J. S.; Prabhudas, B.; Pratihar, D.; Reddy,
M.V. R. Org. Biomol. Chem. 2005, 3, 3812. (k) Anderson, O. P.; Barrett,
A. G. M.; Edmunds, J. J.; Hachiya, S.-I.; Hendrix, J. A.; Horita, K.; Malecha,
J. W.; Parkinson, C. J.; VanSickle, A. Can. J. Chem. 2001, 79, 1562. (l)
Castoldi, D.; Caggiano, L.; Panigada, L.; Sharon, O.; Costa, A. M.; Gennari,
C. Chem.sEur. J. 2006, 12, 51. (m) Yeung, K.-S.; Paterson, I. Chem. ReV.
2005, 105, 4237. (n) Lombardo, M.; Trombini, C. Chem. ReV. 2007, 107,
3843. (o) Wang, X.; Porco, J. A. J. Am. Chem. Soc. 2003, 125, 6040. (p)
Zhang, Q.; Lu, H.; Richard, C.; Curran, D. P. J. Am. Chem. Soc. 2004,
126, 36. (q) Curran, D. P.; Zhang, O.; Richard, C.; Lu, H.; Gudipati, V.;
Wilcox, C. S. J. Am. Chem. Soc. 2006, 128, 9561. (r) Nicolaou, K. C.;
Sun, Y.-P.; Guduru, R.; Banerji, B.; Chen, D. Y.-K. J. Am. Chem. Soc.
2008, 130, 3633. (s) Ramachandran, P. V.; Burghardt, T. E.; Reddy,
M. V. R. J. Org. Chem. 2005, 70, 2329. (t) Ramachandran, P. V.; Prabhudas,
B.; Chandra, J. S.; Reddy, M. V. R. J. Org. Chem. 2004, 69, 6294. (u)
Ramachandran, P. V.; Liu, H.; Reddy, M. V. R.; Brown, H. C. Org. Lett.
2003, 5, 3755. (v) Liu, B.; Zhou, W.-S. Org. Lett. 2004, 6, 71. (w) Carter,
K. D.; Panek, J. S. Org. Lett. 2004, 6, 55. (x) Canova, S.; Bellosta, V.;
Bigot, A.; Mailliet, P.; Mignani, S.; Cossy, J. Org. Lett. 2007, 9, 145. (y)
Kirschning, A.; Jesberger, M.; Scho¨ning, K.-U. Synthesis 2001, 507. (z)
Beumer, R.; Bayo´n, P.; Bugada, P.; Ducki, S.; Mongelli, N.; Sirtori, F. R.;
Telsera, J.; Gennari, C. Tetrahedron 2003, 59, 8803. (aa) Castoldi, D.;
Caggiano, L.; Bayo´n, P,; Costa, A. M.; Cappella, P.; Sharon, O.; Gennari,
C. Tetrahedron 2005, 61, 2123. (ab) Telser, J.; Beumer, R.; Bell, A. A.;
Ceccarelli, S. M.; Monti, D.; Gennari, C. Tetrahedron Lett. 2001, 42, 9187.
(ac) Beumer, R.; Bayo´n, P.; Bugada, P.; Ducki, S.; Mongelli, N.; Sirtori,
F. R.; Telsera, J.; Gennari, C. Tetrahedron Lett. 2003, 44, 681. (ad)
Ramachandran, P. V.; Prabhudas, B.; Pratihar, D.; Chandra, J. S.; Reddy,
M. V. R. Tetrahedron Lett. 2003, 44, 3745. (ae) Kim, J. D.; Kim, I. S.;
Hua, J. C.; Zee, O. P.; Jung, Y. H. Tetrahedron Lett. 2005, 46, 1079. (af)
Chinchilla, R.; Na´jera, C.; Yus, M. Tetrahedron 2005, 61, 3139. (ag) Wrona,
I. E.; Agouridas, V.; Panek, J. S. C. R. Chimie 2008, 11, 1483.
1
R
R
R
S
R
S
S
a, Me
b, Prd
c, i-Pr
d, Ph
e, t-Bu
65
93
65
90
89
80
61
53
71
76
50
50
98
98
98
99
98
98
98
98
98
99
98
96
S,S
S,S
R,R
S,S
R,R
R,R
f, CHdCHMe
a Yield was based on the amount of the aldehyde used. b Calculated
from the 31P NMR peak areas using the Alexakis method (see Figure 2).5
c The absolute configuration was determined by comparison of optical
rotation with literature values.3 d (3R,4R)-7b was prepared in 88% yield
(98% de and ee) from 1S.
For analysis purposes, the racemic reagent ((()-1) was
prepared to evaluate its thermal stability with respect to cis/
trans isomerization. In marked contrast to the instability of
the Ipc2B reagents, the pure cis geometry of 1 was retained
upon warming to room temperature. After either 4 d at 36
°C or 14 h at 80 °C, a ∼70:30 cis/trans mixture is formed.
Further heating at 80 °C or attempted vacuum distillation of
this mixture at 0.1 mmHg leads to decomposition without
significantly changing the cis/trans ratio.
Because of the unusual stability of these trialkylboranes, we
were able to obtain clear NMR spectral data for 1 as is illustrated
for the vinylic hydrogens in this mixture (Figure 1).
The clean resolution of the 31P NMR signals derived from
the isomeric Alexakis P-alkoxy-1,3,2-diazaphosphor-olane
derivatives of 7a can be seen in Figure 2. Thus, these esters
from 7a with another thermally isomerized cis/trans mixture
of (()-1 shows that this borane reagent gives rise to all four
of the possible isomeric products. However, the erythro
isomers are essentially absent (<1%) from the unisomerized
(()-1. Prepared from (10R)-1, (2S,3S)-7d is produced with
no detectable amount of the erythro (anti) diasteromers and
(7) Brown, H. C.; Lynch, G. J. J. Org. Chem. 1981, 46, 531.
2572
Org. Lett., Vol. 11, No. 12, 2009