converted to two species showing typical metal–carbene sp2
carbon resonances at 206 and 217 ppm (Fig. 1a).4 The 161 and
168 ppm resonances are assigned to aryl and alkyl amidinium
compounds, 190 and 200, respectively.11,12 We speculated that
the signals at 206 ppm and 217 ppm might be assigned to
Cu–carbene complex (90–Cu)13 and Mg–carbene complex
(90–Mg),14 respectively. These tentative assignments are
supported by the following observations: when chloroamidinium
80ꢀClꢁ was treated with PhMgBr in the absence of CuCl
(Fig. 1b), the 216 ppm resonance appeared as the only carbene
species (90–Mg). When this mixture was further treated with
CuCl (Fig. 1c), the 216 ppm resonance is completely converteꢁd
to the resonance at 206 ppm (90–Cu). When a mixture of 80ꢀCl
and CuCl was treated with EtMgBr (Fig. 1d), the Cu–carbene
resonance at 207 ppm (90–Cu) was again observed while the
216 ppm resonance was not detected in this case. Importantly,
these assignments are also in accord with the 13C NMR studies
with known acyclic carbene species4d,15 prepared from deproto-
nation of 13C-labeled formamidinium ion 220ꢀPF6ꢁ (Scheme 2).w
Notes and references
1 (a) F. E. Hahn and M. C. Jahnke, Angew. Chem., Int. Ed., 2008, 47,
3122; (b) F. Glorius, in N-Heterocyclic Carbenes in Transition
Metal Catalysis, ed. Springer-Verlag, New York, 2007, Topics in
Organometallic Chemistry, vol. 21; (c) E. A. B. Kantchev,
C. J. O’Brien and M. G. Organ, Angew. Chem., Int. Ed., 2007,
46, 2768; (d) S. P. Nolan, in N-Heterocyclic Carbenes in Synthesis,
ed., Wiley-VCH, Weinheim, Germany, 2006.
2 (a) L. H. Gade and S. Bellemin-Laponnaz, Top. Organomet.
Chem., 2007, 21, 117; (b) D. R. Snead, H. Seo and S. Hong, Curr.
Org. Chem., 2008, 12, 1370.
3 (a) R. W. Alder, M. E. Blake, L. Chaker, J. N. Harvey, F. Paolini
and J. Schutz, Angew. Chem., Int. Ed., 2004, 43, 5896;
¨
(b) R. W. Alder, M. E. Blake, S. Bufali, C. P. Butts,
A. G. Orpen, J. Schutz and S. J. Williams, J. Chem. Soc., Perkin
¨
Trans. 1, 2001, 1586; (c) R. W. Alder, M. E. Blake, C. Bortolotti,
S. Bufali, C. P. Butts, E. Linehan, J. M. Oliva, A. G. Orpen and
M. J. Quayle, Chem. Commun., 1999, 241; (d) R. W. Alder,
P. R. Allen, M. Murray and A. G. Orpen, Angew. Chem., Int.
Ed. Engl., 1996, 35, 1121.
4 (a) Y. A. Wanniarachchi, Y. Kogiso and L. M. Slaughter, Organo-
metallics, 2008, 27, 21; (b) Y. A. Wanniarachchi and
L. M. Slaughter, Chem. Commun., 2007, 3294; (c) E. L. Rosen,
M. D. Sanderson, S. Saravanakumar and C. W. Bielawski, Organo-
metallics, 2007, 26, 5774; (d) B. Dhudshia and A. N. Thadani, Chem.
Commun., 2006, 668; (e) A. I. Moncada, S. Manne, J. M. Tanski and
L. M. Slaughter, Organometallics, 2006, 25, 491; (f) G. D. Frey,
E. Herdtweck and W. A. Herrmann, J. Organomet. Chem., 2006,
691, 2465; (g) D. Kremzow, G. Seidel, C. W. Lehmann and
A. Furstner, Chem.–Eur. J., 2005, 11, 1833; (h) W. A. Herrmann,
¨
¨
K. Ofele, D. V. Preysing and E. Herdtweck, J. Organomet. Chem.,
2003, 684, 235; (i) K. Denk, P. Sirsch and W. A. Herrmann,
J. Organomet. Chem., 2002, 649, 219.
5 A. M. Magill, K. J. Cavell and B. F. Yates, J. Am. Chem. Soc.,
2004, 126, 8717.
6 H. Seo, D. Hirsch-Weil, K. A. Abboud and S. Hong, J. Org.
Chem., 2008, 73, 1983.
7 (a) C. A. Falciola and A. Alexakis, Eur. J. Org. Chem., 2008, 3765;
(b) S. R. Harutyunyan, T. den Hartog, K. Geurts, A. J. Minnaard
and B. L. Feringa, Chem. Rev., 2008, 108, 2824; (c) A. Alexakis,
C. Malan, L. Lea, K. Tissot-Croset, D. Polet and C. Falciola,
Chimia, 2006, 60, 124; (d) H. Yorimitsu and K. Oshima, Angew.
Chem., Int. Ed., 2005, 44, 4435; (e) A. H. Hoveyda, A. W. Hird and
M. A. Kacprzynski, Chem. Commun., 2004, 1779; (f) A. Pfaltz and
M. Lautens, in Comprehensive Asymmetric Catalysis, ed.
E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer-Verlag,
Berlin, 1999, vol. II, pp. 833–884.
Schemeꢁ
2
Preparation of 13C-labeled formamidinium precursor
220ꢀPF6 and observed 13C resonance values.
One of the plausible mechanistic scenarios might involve
metal–halide exchange between chloroamidinium and R2CuMgBr
(eqn (3))16 or a two-step sequence of magnesium–chloride
exchange17a followed by transmetallation.17b However, more
detailed mechanistic study is necessary.
8 The a selectivity with CuTC alone (without a donating ligand) has
been reported: A. Alexakis and K. Croset, Org. Lett., 2002, 4,
4147.
9 H. Kaur, F. K. Zinn, E. D. Stevens and S. P. Nolan, Organo-
metallics, 2004, 23, 1157.
10 (a) R. M. Gschwind, Chem. Rev., 2008, 108, 3029;
(b) S. R. Harutyunyan, F. Lopez, W. R. Browne, A. Correa,
´
D. Pena, R. Badorrey, A. Meetsma, A. J. Minnaard and
B. L. Feringa, J. Am. Chem. Soc., 2006, 128, 9103.
In conclusion, highly SN20-selective allylic alkylation can
be catalyzed by a mixture of chloroamidinium salt and
Cu(I)-thiophenecarboxylate in the presence of Grignard
reagent. 13C NMR study results are in accord with generation
of an acyclic diaminocarbene–copper species. Development of
chiral chloroamidinium precursors for enantioselective
reaction is currently in progress.
11 V. Jurcı
12 Y. Genisson, N. Lauth-de Viguerie, C. Andre
L. Gorrichon, Tetrahedron: Asymmetry, 2005, 16, 1017.
13 A. Welle, S. Dıez-Gonzalez, B. Tinant, S. P. Nolan and O. Riant,
Org. Lett., 2006, 8, 6059.
´
k and R. Wilhelm, Green Chem., 2005, 7, 844.
´
´
, M. Baltas and
´
´
14 (a) Y. Lee and A. H. Hoveyda, J. Am. Chem. Soc., 2006, 128,
15604; (b) A. J. Arduengo III, H. V. R. Dias, F. Davidson and
R. L. Harlow, J. Organomet. Chem., 1993, 462, 13.
We thank the University of Florida, the Donors of the
American Chemical Society Petroleum Research Fund
(PRF # 46157-G1), and James & Esther King Biomedical
Research Program, Florida Department of Health (08KN-04)
for support of this research. We thank Dr. Ghiviriga for
help with low temperature NMR. S. H. thanks Oak Ridge
Associated Universities for the Ralph E. Powe Junior Faculty
Enhancement Award.
15 G. D. Frey, C. F. Rentzsch, D. von Preysing, T. Scherg,
M. Muhlhofer, E. Herdtweck and W. A. Herrmann,
¨
J. Organomet. Chem., 2006, 691, 5725.
16 G. M. Whitesides, W. F. Fischer Jr, J. S. Filippo Jr, R. W. Bashe
and H. O. House, J. Am. Chem. Soc., 1969, 91, 4871.
´
17 (a) M. Abarbri, J. Thibonnet, L. Berillon, F. Dehmel,
M. Rottlander and P. Knochel, J. Org. Chem., 2000, 65, 4618;
¨
(b) L. Boymond, M. Rottlander, G. Cahiez and P. Knochel,
¨
Angew. Chem., Int. Ed., 1998, 37, 1701.
ꢂc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 2475–2477 | 2477