10.1002/anie.201804284
Angewandte Chemie International Edition
COMMUNICATION
Lee, Adv. Synth. Catal. 2017, 359, 3362–3370; l) G. Zheng, M. Tian, Y.
Xu, X. Chen, X. Li, Org. Chem. Front. 2018, 5, 998–1002.
With the goal to demonstrate the synthetic applicability of
the products, 4,5-dihydro-3H-isothiazole 1-oxide 2f and 3H-1λ4-
arylo[d]isothiazole 1-oxide 4h were subjected to metal-catalyzed
cross coupling conditions. Using 2f in a Suzuki-type arylation
reaction with phenylboronic acid in the presence of cesium
hydroxide under catalysis with palladium/XPhos afforded cross
coupling product 5 in 93% yield (Scheme 4, middle). Next,
treating 4h with bis(pinacolato)diboron (B2Pin2), PdCl2(dppf) and
potassium acetate in DMSO at 50 °C led to pinacol boronic acid
ester 6 in 38% yield (Scheme 4, bottom). We consider product 6
as useful building block for further functionalizations as recently
demonstrated for related sulfoximine derivatives.[6b,23]
In summary, we developed an intramolecular imidation of
sulfoxides using alkyl azides as nitrene precursors.[24] Employing
commercially available FeIIphthalocyanine (FeIIPc) as catalyst,
various cyclic sulfoximine derivatives can be accessed in up to
98% yield. The substrate scope is broad, leading to products,
which can further be derivatized by metal-catalyzed cross-
couplings.
[6]
a) P. Lamers, L. Buglioni, S. Koschmieder, N. Chatain, C. Bolm, Adv.
Synth. Catal. 2016, 358, 3649–3653; b) P. Lamers, C. Bolm, Org. Lett.
2018, 20, 116–118. For examples reported by others including early
work on related compounds, see: c) P. K. Claus, P. Hofbauer, W.
Rieder, Tetrahedron Lett. 1974, 15, 3319–3322; d) P. Stoss, G.
Satzinger, Chem. Ber. 1972, 105, 2575–2583; e) P. Stoss, G. Satzinger,
Chem. Ber. 1975, 108, 3855–3863; f) J. R. Beck, J. A. Yahner, J. Org.
Chem. 1978, 43, 2052–2055; g) E. A. Serebryakov, S. G. Zlotin, Russ.
Chem. Bull. 2002, 51, 1549–1555.
[7]
a) H. Wang, M. Frings, C. Bolm, Org. Lett. 2016, 18, 2431–2434; b) R.
A. Bohmann, Y. Unoh, M. Miura, C. Bolm, Chem. Eur. J. 2016, 22,
6783–6786; c) Y. Cheng, W. Dong, H. Wang, C. Bolm, Chem. Eur. J.
2016, 22, 10821–10824; d) Y. Cheng, W. Dong, K. Parthasarathy, C.
Bolm, Org. Lett. 2017, 19, 726–729; e) J. Wen, H. Cheng, G. Raabe, C.
Bolm, Org. Lett. 2017, 19, 6020–6023; f) D. Zhang, H. Wang, H. Cheng,
J. G. Hernández, C. Bolm, Adv. Synth. Catal. 2017, 359, 4274–4277.
For selected reviews, see: a) C. Bolm, J. Legros, J. Le Paih, L. Zani,
Chem. Rev. 2004, 104, 6217–6254; b) B. D. Sherry, A. Fürstner, Acc.
Chem. Res. 2008, 41, 1500–1511; c) C. Bolm, Nat. Chem. 2009, 1,
420; d) R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111,
1417–1492; e) I. Bauer, H. J. Knölker, Chem. Rev. 2015, 115, 3170–
3387; f) R. B. Bedford, Acc. Chem. Res. 2015, 48, 1485–1493; g) C.
Cassani, G. Bergonzini, C. J. Wallentin, ACS Catal. 2016, 6, 1640–
1648; h) A. Guérinot, J. Cossy, Top. Curr. Chem. 2016, 374, 49–74; i)
A. Fürstner, ACS Cent. Sci. 2016, 2, 778–789; j) R. Shang, L. Ilies, E.
Nakamura, Chem. Rev. 2017, 117, 9086–9139.
[8]
Acknowledgements
H.Y. thanks the China Scholarship Council for a predoctoral
stipend. Furthermore, we are grateful to Plamena Staleva
(RWTH Aachen University) for HPLC analyses and Dr. José G.
Hernández (RWTH Aachen University) for polishing the
manuscript.
[9]
For selected examples, see: a) S. M. Paradine, M. C. White, J. Am.
Chem. Soc. 2012, 134, 2036–2039; b) Q. Nguyen, T. Nguyen, T. G.
Driver, J. Am. Chem. Soc. 2013, 135, 620–623; c) Y. Liu, X. Guan, E. L.
M. Wong, P. Liu, J. S. Huang, C. M. Che, J. Am. Chem. Soc. 2013, 135,
7194–7204.
[10] For reviews, see: a) T. Katsuki, Chem. Lett. 2005, 34, 1304–1309; b) K.
Shin, H. Kim, S. Chang, Acc. Chem. Res. 2015, 48, 1040–1052; c) Y.
Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247–9301.
Keywords: azide • cyclic sulfoximine • intramolecular imidation •
iron • nitrene transfer
[11] Large-scale reactions with organic azides raise serious safety concerns.
For recent industrial reports describing carefully devised protocols for a
safer handling of organoazides (and HN3), see: a) F. González-Bobes,
N. Kopp, L. Li, J. Deerberg, P. Sharma, S. Leung, M. Davies, J. Bush, J.
Hamm, M. Hrytsak, Org. Process Res. Dev. 2012, 16, 2051–2057; b) D.
S. Treitler, S. Leung, M. Lindrud, Org. Process Res. Dev. 2017, 21,
460–467; c) A. Steven, P. Hopes, Org. Process Res. Dev. 2018, 22,
77–81.
[1]
[2]
a) F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752–
6756; b) F. Lovering, MedChemComm 2013, 4, 515–519.
a) S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451 3479;
–
b) W. P. Walters, J. Green, J. R. Weiss, M. A. Murcko, J. Med. Chem.
2011, 54, 6405–6416.
[3]
[4]
[5]
For a review on molecular building blocks for medicinal chemistry, see:
F. W. Goldberg, J. G. Kettle, T. Kogej, M. W. D. Perry, N. P. Tomkinson,
Drug Discovery Today 2015, 20, 11 17.
–
[12] Continuous flow synthesis has elegantly been used for scaling-up
reactions with organoazides (and HN3). For examples related to the
chemistry reported here, see: a) B. Gutmann, P. Elsner, A. O'Kearney-
McMullan, W. Goundry, D. M. Roberge, C. O. Kappe, Org. Process Res.
Dev. 2015, 19, 1062–1067; b) H. Lebel, H. Piras, M. Borduy, ACS Catal.
2016, 6, 1109–1112; for a related extension, see: c) L. Degennaro, A.
Tota, S. De Angelis, M. Andresini, C. Cardellicchio, M. A. Capozzi, G.
Romanazzi, R. Luisi, Eur. J Org. Chem. 2017, 6486–6490.
For an interesting computational analysis involving a "virtual exploratory
heterocyclic library", see: W. R. Pitt, D. M. Parry, B. G. Perry, C. R.
Groom, J. Med. Chem. 2009, 52, 2952 2963.
–
a) W. Dong, L. Wang, K. Parthasarathy, F. Pan, C. Bolm, Angew.
Chem. 2013, 125, 11787–11790; Angew. Chem. Int. Ed. 2013, 52,
11573–11576; b) Y. Cheng, C. Bolm, Angew. Chem. 2015, 127,
12526–12529; Angew. Chem. Int. Ed. 2015, 54, 12349–12352; c) J.
Wen, D. P. Tiwari, C. Bolm, Org. Lett. 2017, 19, 1706–1709. For
examples reported by others, see: d) M. Harmata, K. Rayanil, M. G.
Gomes, P. Zheng, N. L. Calkins, S. Y. Kim, Y. Fan, V. Bumbu, D. R.
Lee, S. Wacharasindhu, X. Hong, Org. Lett. 2005, 7, 143–145; e) M.
Harmata, Y. Chen, C. L. Barnes, Org. Lett. 2007, 9, 5251–5253; f) A.
Garimallaprabhakaran, X. Hong, M. Harmata, ARKIVOC 2012, 119–
128; g) D. G. Yu, F. de Azambuja, F. Glorius, Angew. Chem. 2014, 126,
2792–2796; Angew. Chem. Int. Ed. 2014, 53, 2754–2758; h) R. K.
Chinnagolla, A. Vijeta, M. Jeganmohan, Chem. Commun. 2015, 51,
12992–12995; i) W. H. Jeon, J. Y. Son, J. E. Kim, P. H. Lee, Org. Lett.
2016, 18, 3498–3501; j) S. R. K. Battula, G. V. Subbareddy, I. E.
Chakravarthyd, V. Saravanan, RSC Adv. 2016, 6, 55710–55714; k) G.
H. Ko, J. Y. Son, H. Kim, C. Y. Maeng, Y. Baek, B. Seo, K. Um, P. H.
[13] For examples of Fe-catalyzed cyclization reactions forming
heterocycles starting from organoazides, see: a) J. Bonnamour, C.
Bolm, Org. Lett. 2011, 13, 2012–2014; b) E. T. Hennessy, T. A. Betley,
Science 2013, 340, 591–595; c) D. A. Iovan, M. J. T. Wilding, Y. Baek,
E. T. Hennessy, T. A. Betley, Angew. Chem. 2017, 129, 15805–15808;
Angew. Chem. Int. Ed. 2017, 56, 15599–15602; d) N. C. Thacker, Z.
Lin, T. Zhang, J. C. Gilhula, C. W. Abney, W. Lin, J. Am. Chem. Soc.
2016, 138, 3501–3509; e) Z, Lin, N. C. Thacker, T. Sawano, T. Drake,
P. Ji, G. Lan, L. Cao, S. Liu, C. Wang, W. Lin, Chem. Sci. 2018, 9,
143–151; f) B. Bagh, D. L. J. Broere, V. Sinha, P. F. Kuijpers, N. P. van
Leest, B. de Bruin, S. Demeshko, M. A. Siegler, J. I. van der Vlugt, J.
Am. Chem. Soc. 2017, 139, 5117–5124.
[14] a) O. García Mancheño, C. Bolm, Org. Lett. 2006, 8, 2349–2352; b) O.
García Mancheño, C. Bolm, Chem. Eur. J. 2007, 13, 6674–6681; c) O.
This article is protected by copyright. All rights reserved.