This work was supported by Grants-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports,
Science, and Technology, Japan.
Notes and references
z Crystal data for [1aAlꢄZnCl2(H2O)2]ꢄ3Et2O: C39H51AlCl2N2O7Zn,
M = 823.07, monoclinic, space group P21/n (no. 14), a = 10.7486(3),
b = 24.8464(7), c = 15.2711(4) A, b = 98.9556(11)1, U = 4028.64(19)
A3, T = 120 K, Z = 4, 37 895 reflections measured, 9161 unique
(Rint = 0.0258). R1 = 0.0307 (I 4 2s(I)), wR2 = 0.0881 (all data),
GOF(F2) = 1.066.16
Crystal data for [(1bAl)2ꢄZn(OAc)2(MeOH)2]ꢄMeOH: C126H110Al4Cl6-
ꢀ
N8O24Zn2, M = 2571.58, triclinic, space group P1 (no. 2), a =
11.2352(7), b = 14.0083(10), c = 19.4195(13) A, a = 70.594(2), b =
89.998(2), g = 87.1542(18)1, U = 2878.7(3) A3, T = 120 K, Z = 2,
28 385 reflections measured, 12999 unique (Rint = 0.1202). R1 = 0.0777
(I 4 2s(I)), wR2 = 0.2200 (all data), GOF(F2) = 1.057.16
1 A. Treibs and F.-H. Kreuzer, Justus Liebigs Ann. Chem., 1968, 718,
208.
2 (a) A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891;
(b) G. Ulrich, R. Ziessel and A. Harriman, Angew. Chem., Int.
Ed., 2008, 47, 1184.
3 (a) J. Karolin, L. B.-A. Johansson, L. Strandberg and T. Ny,
J. Am. Chem. Soc., 1994, 116, 7801; (b) R. Reents, M. Wagner,
J. Kuhlmann and H. Waldmann, Angew. Chem., Int. Ed., 2004, 43,
2711.
´
4 T. L. Arbeloa, F. L. Arbeloa, I. L. Arbeloa, I. Garcıa-Moreno,
A. Costela, R. Sastre and F. Amat-Guerri, Chem. Phys. Lett.,
1999, 299, 315.
5 L. Bonardi, H. Kanaan, F. Camerel, P. Jolinat, P. Retailleau and
R. Ziessel, Adv. Funct. Mater., 2008, 18, 401.
6 (a) K. Rurack, M. Kollmannsberger and J. Daub, New J. Chem.,
2001, 25, 289; (b) K. Rurack, M. Kollmannsberger and J. Daub,
Angew. Chem., Int. Ed., 2001, 40, 385.
Fig. 4 Crystal structure of (1aAl)2ꢄZn(OAc)2. Thermal ellipsoids are
plotted at 50% probability level: (a) and (b) show the top and side
views, respectively. Hydrogen atoms and non-coordinating solvent
molecules are omitted for clarity. One of the structures of
(1aAl)2ꢄZn(OAc)2 is shown for the two molecules in the asymmetric
unit. Selected bond lengths (A): Zn1–O1 2.071(4), Zn1–O2 2.143(4),
Zn1–O3 2.112(4), Al1–O1 1.871(4), Al1–O2 1.860(5), Al1–O4 1.927(4),
Al1–O5 1.964(4), Al1–N1 1.916(6), Al1–N2 1.933(5).
7 (a) M. Wada, S. Ito, H. Uno, T. Murashima, N. Ono, T. Urano
and Y. Urano, Tetrahedron Lett., 2001, 42, 6711; (b) Z. Shen,
H. Rohr, K. Rurack, H. Uno, M. Spieles, B. Schulz, G. Reck and
¨
However, different optical properties of the 2 : 1 complex
compared to that of the 1 : 1 complex were suggested from the
absorption spectral pattern in which two strong absorption
bands at 568 and 601 nm were observed (see Fig. S1w). X-Ray
crystallographic study revealed that the two 1aAl moieties are
bridged by a zinc(II) ion (Fig. 4).z The trinuclear dimeric
structure is stabilized by the two m-acetate ligands bridging
Al1–Zn1 and Al1*–Zn1. The m-phenoxo oxygen atoms
(O1 and O2) of the dipyrrin coordinate to Zn1 at the inversion
center to give octahedral geometry. Since the dimeric complex
is labile, the complexation of analogues of the aluminium
complex with Zn(OAc)2 could be applied to the construction
of dynamic dipyrrin assemblies.
N. Ono, Chem.–Eur. J., 2004, 10, 4853.
8 (a) J. Chen, J. Reibenspies, A. Derecskei-Kovacs and K. Burgess,
Chem. Commun., 1999, 2501; (b) J. Chen, A. Burghart,
A. Drecskei-Kovacs and K. Burgess, J. Org. Chem., 2000, 65, 2900.
9 (a) I. V. Sazanovich, C. Kirmaier, E. Hindin, L. Yu, D. F. Bocian,
J. S. Lindsey and D. Holten, J. Am. Chem. Soc., 2004, 126, 2664;
(b) A. B. Zaitsev, R. Me
A. I. Mikhaleva, S. Badre
´
´
allet-Renault, E. Y. Schmidt,
, C. Dumas, A. M. Vasil’tsov,
N. V. Zorina and R. B. Pansu, Tetrahedron, 2005, 61, 2683;
(c) H. L. Kee, C. Kirmaier, L. Yu, P. Thamyongkit,
W. J. Youngblood, M. E. Calder, L. Ramos, B. C. Noll,
D. F. Bocian, W. R. Scheidt, R. R. Birge, J. S. Lindsey and
D. Holten, J. Phys. Chem. B, 2005, 109, 20433.
10 V. S. Thoi, J. R. Stork, D. Magde and S. M. Cohen, Inorg. Chem.,
2006, 45, 10688.
In conclusion, novel aluminium complexes of an N2O2-type
dipyrrin were synthesized and their complexes with ZnCl2,
ZnBr2 and Zn(OAc)2 were characterized. The fluorescence
wavelength and the intensity of the aluminium complexes
drastically changed upon Zn complex formation. The results
obtained in this study can be applied not only to tunable
fluorescence materials, but also to metallosupramolecules with
cation-responding properties. We are currently studying other
multinuclear complexes based on N2O2-type dipyrrins which
possess interesting optical and magnetic properties.
11 (a) Y. Zhang, A. Thompson, S. J. Rettig and D. Dolphin, J. Am.
Chem. Soc., 1998, 120, 13537; (b) A. Thompson, S. J. Rettig and
D. Dolphin, Chem. Commun., 1999, 631; (c) T. E. Wood,
N. D. Dalgleish, E. D. Power, A. Thompson, X. Chen and
Y. Okamoto, J. Am. Chem. Soc., 2005, 127, 5740.
12 S. M. Bloom and P. P. Garcia, US Pat., 3 691 161, 1972.
13 H. Kim, A. Burghart, M. B. Welch, J. Reibenspies and K. Burgess,
Chem. Commun., 1999, 1889.
14 S. Wang, Coord. Chem. Rev., 2001, 215, 79.
15 An average of four O–Zn–Cl angles is given.
16 G. M. Sheldrick, SHELXL 97, Program for crystal structure
refinement, University of Gottingen, Gottingen, Germany, 1997.
¨
¨
ꢀc
This journal is The Royal Society of Chemistry 2009
2546 | Chem. Commun., 2009, 2544–2546