J. Chil. Chem. Soc., 62, Nº 1 (2017)
La(NO3) .9H2O, Ca(NO3)2.4H2O and Co(NO3)3.6H2O were obtained
from Merck,3Germany; citric acid was purchased from Aldrich, USA. All
the reagents were analytical grade and thus used as received. Deionized
water was used throughout the experiments.
21.- M. Nandia, K. Sarkara, M. Seikhc, A. Bhaumik, Microporous Mesoporous
Mater. 143, 392, (2011)
22.- H. Aono, E. Traversa, M. Sakamoto, Y. Sadaoka, Sens. Actuators, B:
Chem., 94, 132, (2003)
Preparation and characterization of nano-sized La0.5Ca0.5CoO3
perovskite
23.- R. Horyn, R. Klimkiewicz, Appl. Catal., A: Gen., 370, 72, (2009)
24.- N. Pal, M. Paul, A. Bhaumik, Appl. Catal., A: Gen., 393, 153, (2011)
25.- M. Yazdanbakhsh, H. Tavakkoli, S. M. Hosseini, Desalination., 281, 388,
(2011)
26.- H. Tavakkoli, M. Yazdanbakhsh, Microporous Mesoporous Mater., 176,
86, (2013)
27.- A.V. Salker, N.J. Choi, J.H. Kwak, B.S. Joo, D.D. Lee, Sens. Actuators,
B: Chem. 106, 461, (2005)
28.- M.D. Smith, A.F. Stepan, C. Ramarao, P.E. Brennan, S.V. Ley, Chem.
Commun. 21, 2652, (2003)
To a solution of La(NO3)3.6H2O (3 mmol, 1.29 g), Ca(NO )2.4H O
(3 mmol, 0.71 g) and Co(NO )2.6H O (6 mmol, 1.75 g) in d3eioniz2ed
water (30 ml), tartaric acid (123mmol2, 2.52 g) was added slowly at room
temperature under constant magnetic stirring (1000 r/min). First, the
solution was refluxed for 2 h and then, stirring was continued at 70 ºC for
3 h. The obtained sol was placed in an oven and heated slowly at 110 ºC
for 12 h. The gel was ground in an agate mortar and then, nanoparticles of
La Ca0.5CoO3 were obtained by calcinations of the powders at 700 ºC for
100h.5. The annealing of the amorphous precursor allows removing most of
the residual carbon and the orthorhombic perovskite phase was obtained.
La0.5Ca0.5CoO of the type perovskite oxide was fabricated by sol–gel
method. Different3techniques were employed to analyze and validate the
synthesized nano catalyst La0.5Ca0.5CoO3.
29.- S.P. Andrews, A.F. Stepan, H. Tanaka, S.V. Ley, M.D. Smith, Adv.
Synth. Catal. 347, 647, (2005)
30.- S. Lohmann, S.P. Andrews, B.J. Burke, M.D. Smith, J.P. Attfield, H.
Tanaka, K. Kaneko, S.V. Ley, Synlett, 8, 1291, (2005)
31.- G. Pilania, P.X. Gao, R. Ramprasad, J. Phys. Chem. 116, 26349, (2012)
32.- M. Yazdanbakhsh, I. Khosravi, M.S. Mashhoori, M. Rahimizadeh, A.
Shiri, M. Bakavoli, Mater. Res. Bull. 47, 413, (2012)
33.- T. Sanaeishoar, H. Tavakkoli, F. Mohave, Appl. Catal. A, 470, 56,
(2014)
General procedure for the reductionofnitriles intotheircorresponding
sec-amines.
To a stirring mixture of the appropriate nitrile (1 mmol) and nano-
sized La0.5Ca0.5CoO3 perovskite (1 mol%, 1.9 mg) in MeOH (5 ml) at 40
ºC, NaBH4 (2 mmol, 0.08 g) was added portion wise. After the completion
of the reaction which was monitored by TLC using CHCl : MeOH (30:1)
as eluent, the catalyst was centrifuged off and the solvent3was evaporated
under reduced pressure. To the resulting oily liquid, water (20 ml) was
added and the mixture was extracted with CH Cl2 (2 × 20 ml). The organic
layer was dried over anhydrous Na2SO4 and2the solvent was evaporated
under reduced pressure to afford the pure products.
34.- A. Shiri, F. Soleymanpour, H. Eshghi, I. Khosravi, Chin. J. Catal. 36,
1191, (2015)
35.- C.F. Kao, C.L. Jeng, Ceram. Int. 25, 375, (1999)
36.- C.F. Kao, C.L. Jeng, Ceram. Int. 26, 237, (2000)
37.- A. Neumann, D. Walter, Thermochim. Acta. 445, 200, (2006)
38.- M. Mazloumi, N. Shahcheraghi, A. Kajbafval, S. Zanganeh, A. Lak,
M.S. Mohajerani, S.K. Sadrinezhaad, J. Alloys Compd. 473, 283,
(2009)
39.- H.E. Zhang, B.F. Zhang, G.F. Wang, X.H. Dong, Y. Gao, J. Magn. Magn.
Mater. 312, 126, (2007)
ACKNOWLEDGEMENTS
40.- L.L. Lorentz-Petersen, P. Jensen, R. Madsen, Synthesis, 24, 4110, (2009)
41.- R. Juday, H. Adkins, J. Am. Chem. Soc. 77, 4559, (1955)
42.- W. He, L. Wang, C. Sun, K. Wu, S. He, J. Chen, P. Wu, Z. Yu, Chem. Eur.
J. 17, 13308, (2011)
The authors gratefully acknowledge the Research Council of
Ferdowsi University of Mashhad for financial support of this project
(3/30980).
43.- N. Azizi, E. Akbari, A.K. Amiri, M.R. Saidi, Tetrahedron Lett. 49, 6682,
(2008)
44.- H. Goksu, S.F. Ho, O.N. Metin, K. Korkmaz, A.G. Mendoza, M.S.
Gultekin, S. Sun, ACS Catal. 4, 1777, (2014)
45.- A. Galan, J. De Mendoza, P. Prados, J. Rojo, A.M. Echavarren, J. Org.
Chem. 56, 452, (1991)
REFERENCES
1.- F. Ullman, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-
VCH, Weinheim, Germany, 2008.
2.- S.A. Lawrence, Amines: Synthesis, Properties and Application,
Cambridge University Press, Cambridge, U.K., 2004.
3.- S.S. Insaf , D.T. Witiak, Synthesis, 3, 435, (1999)
4.- Z. Rappoport, The Chemistry of the Cyano Group, Wiley Interscience,
New York, 1970.
5.- J. March, Advanced Organic Chemistry: Reactions, Mechanisms and
Structure Wiley Interscience, Toronto, Canada, 1992.
6.- D. Addis, S. Enthaler, E. K. Jung, B. Wendt, M. Beller, Tetrahedron Lett.
50, 3656 (2009)
7.- S. Enthaler, D. Addis, K. Junge, G. Erre, M. Beller, Chem. Eur. J. 14, 9491
(2008)
8.- E.R.H. Walker, Chem. Soc. Rev. 5, 23, (1976)
9.- B. Klenke, I.H. Gilbert, J. Org. Chem. 66, 2480, (2001)
10.- C.A. Buehler, D.E. Pearson, Survey of Organic Synthesis, Wiley-
Interscience, New York, 1970, p. 413.
11.- O. Mitsunobu, Comprehensive Organic Synthesis; Trost, B. M. Fleming,
I., Eds.; Pergamon: Oxford, U.K., 1991; Vol. 6, p 65.
12.- H.C. Brown, J.S. Cha, J. Org. Chem. 58, 3974, (1993)
13.- M. Hudlicky, Reductions in Organic Chemistry, Second ed., ACS
Monograph 188, American Chemical Society, Washington, D.C, 1996, p.
19.
14.- N.M. Yoon, H.C. Brown, J. Am. Chem. Soc. 90, 2927, (1968)
15.- R.C. Wade, J. Mol. Catal. 18, 273, (1983)
16.- J.M. Khurana, G. Kukreja, Synth. Commun. 32, 1265, (2002)
17.- B. Ganem, J.O. Osby, Chem. Rev. 86, 763, (1986)
18.- H.C. Brown, Boranes in Organic Chemistry, Cornell University Press,
New York, 1972, pp. 209-251.
19.- C.D. Chandler, C. Roger, M.J. Hampden-Smith, Chem. Rev. 93, 1205,
(1993)
20.- R. Robert, M.H. Aguirre, P. Hug, A. Reller, A. Weidenkaff, Acta Mater.
55, 4965, (2007)
3334