74
C. T. Pedersen, F. Jensen, and R. Flammang
8 mm internal diameter) has been described earlier.[18] BaF2
optics were used. For some of the pyrolyses, e.g. 1d and 1e, a
modified oven was used, in which the hot tube extends to within a
fewmmfromthecoldBaF2 disk.TheFVP-MSequipment, based
on a six-sector tandem mass spectrometer (MicromassAutoSpec
6F) fitted with a quartz thermolysis tube (50 mm length, 3 mm
inner diameter) directly connected to the outer ion source was
previously described.[19]
[4] R. H. Shapiro, J. W. Serum, A. M. Duffield, J. Org. Chem. 1968, 33,
243. doi:10.1021/JO01265A048
[5] C. Larsen, U. Anthoni, C. Christophersen, P. H. Nielsen, Acta
Chem. Scand. 1969, 23, 324. doi:10.3891/ACTA.CHEM.SCAND.
23-0324
[6] Attempts to prepare 1-methyl-3-phenoxy thiourea from methyl isoth-
iocyanate and phenoxyamine result in quantitative formation of ele-
mentary sulfur.The reaction of CS2 with methoxyamine also produces
sulfur. Already Schiff noted in 1876 that the reaction between hydrox-
ylamine and isothiocyanate yielded sulfur and cyanamides: R. Schiff,
Ber. Dtsch. Chem. Ges. 1876, 9, 574. The formation of cyanamides
via Pathway 3 formally corresponds to the loss of S + EtOH. The for-
mation of EtOH is indicated in the presence of a band at 3655 cm−1 in
the IR spectra of the pyrolysis products from compounds 2a and 2e.
The OH frequency is reported for ETOH at 3656 cm−1: W. A. P. Luck,
O. Schrems, J. Mol. Spectr. 1980, 60, 333. This is further supported by
the presence of m/z 46 in the mass spectrum of 2a.−A1 corresponding
IR band is observed in 2b, 2e, and 2d at 3666 cm corresponding
to the OH frequency in MeOH reported at 3667 cm−1: A. Serrallach,
R. Meyer, H. H. Günthard, J. Mol. Spectrosc. 1974, 52, 94. Bands cor-
responding to the O–C vibration are also observed; however, owing
to the presence of unpyrolyzed starting materials, these bands cannot
be unambiguously assigned to the alcohols.
The pulsed pyrolysis apparatus[13] employed a solenoid valve
(General Valve Corp. Series 9) operating at a frequency of four
pulses per min and a pulse duration of 10 s. The sample was
evaporated at 100◦C in a stream ofAr passed through the sample
chamber at a stagnation pressure of 100 Pa. The sample chamber
was attached directly to the valve, and both were held at the
same temperature. The exit aperture of the valve led into an
electrically heated quartz capillary (60 mm long, inner diameter
0.9 mm). The pyrolysis temperature in the oven was measured
by optical pyrometry through a quartz window. Temperatures
between 1000◦ and 1200◦C were used.
Materials
[7] W. Jabs, M. Winnewisser, S. P. Belov, F. Lewen, F. Maiwald,
G. Winnewisser, Mol. Phys. 1999, 97, 213. doi:10.1080/
002689799164072
[8] (a) M. Wierzejewska, Z. Mielke, Chem. Phys. Lett. 2001, 349, 227.
doi:10.1016/S0009-2614(01)01180-0
The thioureas were prepared from alkoxyamines and isothio-
cyanatesaccordingtoknownprocedures.[20,21] O-Methoxyamine
and O-ethoxyamine are commercially available as hydrochlo-
rides.
(b) J. R. Durig, D. W. Wertz, J. Chem. Phys. 1967, 46, 3069.
doi:10.1063/1.1841178
Matrix IR Spectra of Authentic Samples
Ar matrix, 10 K, ν/cm−1: Benzaldehyde 3063(w), 2825(m),
2743(m), 1716(v), 1654(m), 1597(s), 1584(s), 1455(m),
1392(m), 1311(m), 1205(s), 1166(m), 1073(w), 828(s),
748(s).
Aniline 3498(w), 3411(w), 3048(w), 1702(vw), 1619(v),
1503(m), 1281(m), 1176(w), 1090(w), 875(w), 755(s).
Formaldehyde 2863(w), 2797(m), 1741(s), 1498(w), 1245(vw).
Methyl Isothiocyanate 2237(m), 2156(m, sh), 2125(v), 1592(w),
1527(m), 1452(vw), 1420(m), 1105(vw).
Ethyl Isothiocyanate 2228(v), 2203(v), 2155(v), 2132(v),
1453(m), 1347(s), 1269(m), 1064(m), 939(m).
Acetaldehyde 2750(w), 2737(w), 1749(m), 1726(s), 1431(m),
1348(m), 872(w).
[9] (a) C. Wentrup, H.-W. Winter, J. Org. Chem. 1981, 46, 1045.
doi:10.1021/JO00318A049
(b) H. M. Badawi, W. Förner, J. Mol. Struct. Theochem 2004, 673,
223. doi:10.1016/J.THEOCHEM.2003.11.048
[10] C. Th. Pedersen, E. Fanghänel, R. Flammang, J. Chem. Soc., Perkin
Trans. 2 2001, 356. doi:10.1039/B007891N
[11] R. J. H. Clark, J. R. Dann, J. Chem. Phys. 1996, 100, 532.
doi:10.1021/JP952135A
[12] J. R. Durig, S. F. Bush, F. G. Baglin, J. Chem. Phys. 1968, 49, 2106.
doi:10.1063/1.1670372
[13] Pulsed pyrolysis was carried out in an apparatus similar to that
described by:
(a) G. G. Qiao, W. Meutermans, M. W. Wong, M.Träubel, C. Wentrup,
J. Am. Chem. Soc. 1996, 118, 3852. doi:10.1021/JA954226R
(b) X. Zhang, A. V. Friderichsen, S. Nandi, G. B. Ellison, D. E. David,
J. T. McKinnon, T. G. Lindeman, D. C. Dayton, M. R. Nimlos, Rev.
Sci. Instrum. 2003, 74, 3077. doi:10.1063/1.1574397
[14] J. A. Blake, D. A. Pratt, L. Shuqiong, J. C. Walton, P. Mulder,
K. U. Ingold, Can. J. Chem. 2004, 69, 3112.
[15] (a)A. D. Becke, J. Chem. Phys. 1993, 98, 5648. doi:10.1063/1.464913
(b) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys.
Chem. 1994, 98, 11623. doi:10.1021/J100096A001
Electronic supplementary information showing computational
data (Cartesian coordinates, absolute energies, and IR spectra)
for calculated species is available from the journal’s website.
Acknowledgements
[16] R. A. Kendall, T. H. Dunning, Jr, R. J. Harrison, J. Chem. Phys. 1992,
96, 6796. doi:10.1063/1.462569
[17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, et al., Gaussian 03 2004 (Gaussian,
Inc.: Wallingford, CT).
[18] R. Flammang, M. Barbieux-Flammang, P. Gerbaux, C. Th. Pedersen,
J. Chem. Soc., Perkin Trans. 2 1997, 1261. doi:10.1039/A700502D
[19] (a) R. H. Bateman, J. Brown, M. Lefevere, R. Flammang, Y. Van
Haverbeke, Int. J. Mass Spectrom. Ion Processes 1992, 115, 205.
doi:10.1016/0168-1176(92)85042-X
The authors thank Professor Curt Wentrup, the University of Queensland,
Australia, for valuable discussions and suggestions. The support of the
Danish National Science Research Council and the Danish Centre for Sci-
entific Computing is acknowledged. The Mons Laboratory thanks the Fond
National de la Research Scientifique for its contribution towards purchase
of the Micromass AutoSpec 6F mass spectrometer.
References
[1] A. T. Bech, R. Flammang, C. Th. Pedersen, M. W. Wong, C. Wentrup,
J. Chem. Soc., Perkin Trans. 2 1999, 1869. doi:10.1039/A903865E
[2] R. Flammang, P. Gerbaux, M. Barbieux-Flammang, C. Th. Pedersen,
A. T. Bech, E. H. Mørkved, M. W. Wong, C. Wentrup, J. Chem. Soc.,
Perkin Trans. 2 1999, 1683. doi:10.1039/A903057C
(b) J. Brown, R. Flammang, Y. Govaert, M. Plisnier, C. Wentrup,
Y. Van Haverbeke, Rapid Commun. Mass Spectrom. 1992, 6, 249.
doi:10.1002/RCM.1290060405
[20] L. Voltmer, Ber. Detsch. Chem. Ges. 1891, 24, 378. doi:10.1002/
CBER.18910240174
[3] H. Binder, Monatsh. Chem. 1967, 98, 431. doi:10.1007/BF00899962
[21] G. Zinner, R.-O. Weber, Pharmazie 1966, 21, 23.