the 973 program (Grant Nos. 2009CB623602, 2009CB930603,
2009CB623604) for financial support.
Notes and references
z Crystal data of BTPASi2 at 293(2) K: C92H83NO2Si2, Mr = 1290.77,
monoclinic, space group P21/c, Dc = 1.144 g cmꢀ3, Z = 4, a =
14.6954(5) A, b = 19.5226(5) A, c = 26.3298(9) A, a = 901, b =
97.2890(10)1, g = 901, V = 7492.8 (4) A3, m = 0.097 mmꢀ1. Bruker
AXS Smart CCD diffractometer, Mo-Ka radiation, l = 0.71073 A,
number of reflections measured = 59 952, number of independent
reflections = 13 230, Rint = 0.0746, final R(F) = 0.0659 (I 4 2s(I)),
wR(F2) = 0.1657. CCDC 714843.
1 (a) M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov,
M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151;
(b) M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson
and S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4; (c) X. Yang,
D. C. Muller, D. Neher and K. Meerholz, Adv. Mater., 2006, 18,
¨
948; (d) G. Zhou, W.-Y. Wong, B. Yao, Z. Xie and L. Wang,
Angew. Chem., Int. Ed., 2007, 46, 1149; (e) C. Yang, X. Zhang,
H. You, L. Y. Zhu, L. Chen, L. N. Zhu, Y. Tao, D. Ma, Z. Shuai
and J. Qin, Adv. Funct. Mater., 2007, 17, 651.
2 (a) K. T. Kamtekar, C. Wang, S. Bettington, A. S. Batsanov,
I. F. Perepichka, M. R. Bryce, J. H. Ahn, M. Rabinal and
M. C. Petty, J. Mater. Chem., 2006, 16, 3823; (b) S.-J. Su,
H. Sasabe, T. Takeda and J. Kido, Chem. Mater., 2008, 20,
1691; (c) Y. Tao, Q. Wang, C. Yang, Q. Wang, Z. Zhang,
T. Zou, J. Qin and D. Ma, Angew. Chem., Int. Ed., 2008, 47, 8104.
3 (a) C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich,
M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys.
Lett., 2001, 79, 2082; (b) R. J. Holmes, S. R. Forrest, Y.-J. Tung,
R. C. Kwong, J. J. Brown, S. Garon and M. E. Thompson, Appl.
Phys. Lett., 2003, 82, 2422; (c) S. Tokito, T. Iijima, Y. Suzuri,
H. Kita, T. Tsuzuki and F. Sato, Appl. Phys. Lett., 2003, 83, 569;
(d) R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li
and M. E. Thompson, Appl. Phys. Lett., 2003, 83, 3818; (e) X. Ren,
J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest and
M. E. Thompson, Chem. Mater., 2004, 16, 4743;
(f) S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq,
H. E. Lee, C. Adachi, P. E. Buttows, S. R. Forrest and
M. E. Thompson, J. Am. Chem. Soc., 2001, 123, 4304.
4 (a) H. Inomata, K. Goushi, T. Masuko, T. Konno, T. Imai,
H. Sasabe, J. J. Brown and C. Adachi, Chem. Mater., 2004, 16,
1285; (b) M.-K. Leung, C.-C. Yang, J.-H. Lee, H.-H. Tsai, C.-F. Lin,
C.-Y. Huang, Y. O. Su and C.-F. Chiu, Org. Lett., 2007, 9, 235.
5 (a) S.-J. Yeh, M.-F. Wu, C.-T. Chen, Y.-H. Song, Y. Chi, M.-H. Ho,
S.-F. Hsu and C.-H. Chen, Adv. Mater., 2005, 17, 285; (b) M.-H. Tsai,
H.-W. Lin, H.-C. Su, T.-H. Ke, C.-C. Wu, F.-C. Fang, Y.-L. Liao,
K.-T. Wong and C.-I. Wu, Adv. Mater., 2006, 18, 1216.
Fig. 3 Current efficiency (Zc)/luminance (L) versus current density (J)
(a) for the FIrpic based devices; (b) for the Ir(ppy)3 based devices.
Table 2 Summary of device performance
Host
BTPASi1
FIrpic
A
BTPASi2
FIrpic
B
Dopant
Device
Ir(ppy)3
C
Ir(ppy)3
D
Vturnꢀon/V
La/cd mꢀ2
EQEb (%)
LEc/cd Aꢀ1
PEd/lm Wꢀ1
CIE (x, y)
3.9
6543
15.4
44
3.7
24 029
15.0
3.7
1865
8.8
25
17
3.5
16 473
19.7
54
46
71
64
35
(0.26, 0.48) (0.33, 0.60) (0.26, 0.47) (0.33, 0.60)
a
b
Maximum luminance. Maximum external quantum efficiency.
d
Maximum current efficiency. Maximum power efficiency.
c
Device D with BTPASi2 as host and Ir(ppy)3 as dopant shows
a maximum current efficiency of 71 cd Aꢀ1, a maximum
power efficiency of 64 lm Wꢀ1, and a maximum luminance of
16 473 cd mꢀ2. We note that the efficiencies are comparable with
the best green phosphorescent OLEDs we recently reported.2c
In summary, we have designed a type of bridged triphenyl-
amine–triphenylsilane (BTPASi) hybrids as novel host mate-
rials for phosphorescent OLEDs. The rigidification of
triphenylamine significantly improves their thermal and
morphological stabilities without affecting their good hole-
transporting ability and high triplet energy. Devices with the
host materials show maximum external quantum efficiency as
high as 15.4% for blue and 19.7% for green electrophos-
phorescence. This work reveals a very promising application
of triphenylamine-based derivatives as efficient host materials.
The further optimization of device configuration is under way.
We thank the National Natural Science Foundation of
China (Project Nos. 50773057, 20474047 and 20621401),
the Ministry of Science and Technology of China through
6 J.-J. Lin, W.-S. Liao, H.-J. Huang, F.-I. Wu and C.-H. Cheng,
Adv. Funct. Mater., 2008, 18, 485.
7 T. F. Palmer and S. S. Parmar, J. Photochem., 1985, 31, 273.
8 (a) C. Ego, A. C. Grimsdale, F. Uckert, G. Yu, G. Srdanov and
K. Mullen, Adv. Mater., 2002, 14, 809; (b) F. Huang, Y. Zhang,
¨
M. S. Liu, Y. J. Cheng and A. K. Y. Jen, Adv. Funct. Mater., 2007,
17, 3808.
9 P.-I. Shih, C.-H. Chien, F.-I. Wu and C.-F. Shu, Adv. Funct.
Mater., 2007, 17, 3514.
10 Y. Tao, Q. Wang, C. Yang, L. Ao, Q. Wang, J. Qin and D. Ma,
Chem. Commun., 2009, 77.
11 K.-T. Wong, Y.-L. Liao, Y.-T. Lin, H.-C. Su and C.-C. Wu, Org.
Lett., 2005, 7, 5131.
12 M. H. Tsai, Y. H. Hong, C. H. Chang, H. C. Su, C. C. Wu,
A.
J. V. Grazulevicius and C. P. Hsu, Adv. Mater., 2007, 19, 862.
Matoliukstyte,
J.
Simokaitiene,
S.
Grigalevicius,
13 (a) J. Jacob, S. Sax, M. Gaal, E. J. W. List, A. C. Grimsdale and
K. Mullen, Macromolecules, 2005, 38, 9933; (b) N. Cocherel,
¨
C. Poriel, J. R. Berthelot, F. Barriere, N. Audebrand, A. M.
Z. Slawin and L. Vignau, Chem.–Eur. J., 2008, 14, 11328.
14 E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy
and R. N. Adams, J. Am. Chem. Soc., 1966, 88, 3498.
15 H. You, Y. D. Z. Zhang and D. Ma, J. Appl. Phys., 2007, 101,
026105.
ꢁc
This journal is The Royal Society of Chemistry 2009
3400 | Chem. Commun., 2009, 3398–3400