Full Paper
2.79 (m, 1 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 166.9, 143.0, 130.0
(2 C), 126.9, 125.6 (2 C), 52.3, 52.0, 51.6 ppm.
115; f) S. A. Wolckenhauer, A. S. Devlin, J. Du Bois, Org. Lett. 2007, 9,
4363; g) C. Zhu, A. Yoshimura, L. Ji, Y. Wei, V. N. Nemykin, V. V. Zhdankin,
Org. Lett. 2012, 14, 3170.
[11]
[12]
For reviews, see: a) P. Müller, C. Fruit, Chem. Rev. 2003, 103, 2905; b) P.
Dauban, R. H. Dodd, Synlett 2003, 1571; c) J. W. W. Chang, T. M. U. Ton,
P. W. H. Chan, Chem. Rec. 2011, 11, 331; d) J. Du Bois, Org. Process Res.
Dev. 2011, 15, 758; e) J. L. Roizen, M. E. Harvey, J. Du Bois, Acc. Chem.
Res. 2012, 45, 911; f) D. Karila, R. H. Dodd, Curr. Org. Chem. 2011, 15,
1507; g) G. Dequirez, V. Pons, P. Dauban, Angew. Chem. Int. Ed. 2012, 51,
7384; Angew. Chem. 2012, 124, 7498; h) J. Buendia, G. Grelier, P. Dauban,
Adv. Organomet. Chem. 2015, 64, 77.
Acknowledgments
We wish to thank the French National Research Agency (pro-
gram number ANR-11-IDEX-0003-02, CHARMMMAT ANR-11-
LABX-0039, and ANR-15-CE29-0014-01; fellowship to A. N.), the
Ministère de l'Enseignement Supérieur et de la Recherche (fel-
lowship to G. G.), the Saint Exupery Program (grant to M. I. H.),
the ECOS-Sud Committee (Action A15E04), and the Institut de
Chimie des Substances Naturelles for their support.
For relevant studies, see: a) R. Breslow, S. H. Gellman, J. Am. Chem. Soc.
1983, 105, 6728; b) P. Müller, C. Baud, Y. Jacquier, Tetrahedron 1996, 52,
1543; c) I. Nägeli, C. Baud, G. Bernardinelli, Y. Jacquier, M. Moran, P.
Müller, Helv. Chim. Acta 1997, 80, 1087; d) C. G. Espino, J. Du Bois, Angew.
Chem. Int. Ed. 2001, 40, 598; Angew. Chem. 2001, 113, 618; e) C. G. Es-
pino, P. M. Wehn, J. Chow, J. Du Bois, J. Am. Chem. Soc. 2001, 123, 6935;
f) K. Guthikonda, J. Du Bois, J. Am. Chem. Soc. 2002, 124, 13672; g) K. W.
Fiori, J. Du Bois, J. Am. Chem. Soc. 2007, 129, 562; h) R. H. Perry, T. J.
Cahill III, J. L. Roizen, J. Du Bois, R. N. Zare, Proc. Natl. Acad. Sci. USA 2012,
109, 18295; i) J. L. Roizen, D. N. Zalatan, J. Du Bois, Angew. Chem. Int. Ed.
2013, 52, 11343; Angew. Chem. 2013, 125, 11553; j) M. Anada, M. Tanaka,
N. Shimada, H. Nambu, M. Yamawaki, S. Hashimoto, Tetrahedron 2009,
65, 3069; k) A. Nörder, S. A. Warren, E. Herdtweck, S. M. Huber, T. Bach,
J. Am. Chem. Soc. 2012, 134, 13524; l) C. Liang, F. Collet, F. Robert-Peillard,
P. Müller, R. H. Dodd, P. Dauban, J. Am. Chem. Soc. 2008, 130, 343; m) J.
Ciesielski, G. Dequirez, P. Retailleau, V. Gandon, P. Dauban, Chem. Eur. J.
2016, 22, 9338; n) J. Buendia, B. Darses, P. Dauban, Angew. Chem. Int. Ed.
2015, 54, 5697; Angew. Chem. 2015, 127, 5789; o) J. Buendia, G. Grelier,
B. Darses, A. G. Jarvis, F. Taran, P. Dauban, Angew. Chem. Int. Ed. 2016,
55, 7530; Angew. Chem. 2016, 128, 7656.
Keywords: Hypervalent Iodine · Rhodium · Epoxidation ·
Alkenes · Lewis acids
[1] For relevant general reviews, see: a) P. J. Stang, V. V. Zhdankin, Chem.
Rev. 1996, 96, 1123; b) V. V. Zhdankin, P. J. Stang, Chem. Rev. 2002, 102,
2523; c) V. V. Zhdankin, P. J. Stang, Chem. Rev. 2008, 108, 5299; d) A.
Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116, 3328; e) U. Ladziata,
V. V. Zhdankin, ARKIVOC 2006, ix, 26; f) V. V. Zhdankin, ARKIVOC 2009, i,
1–62.
[2] For excellent monographs on hypervalent iodine chemistry, see: a) A.
Varvoglis, Hypervalent Iodine in Organic Synthesis, Academic Press, Lon-
don, 1997; b) Hypervalent Iodine Chemistry: Modern Developments in Or-
ganic Synthesis (Ed. T. Wirth), Topics in Current Chemistry, vol. 224,
Springer, Berlin, 2003; c) V. V. Zhdankin, Hypervalent Iodine Chemistry,
John Wiley & Sons, Chichester, 2014; d) Hypervalent Iodine Chemistry (Ed.
T. Wirth), Topics in Current Chemistry, vol. 373, Springer, Berlin, 2016.
[3] a) M. Brown, U. Farid, T. Wirth, Synlett 2013, 24, 424; b) R. M. Romero, T. H.
Wöste, K. Muniz, Chem. Asian J. 2014, 9, 972; c) M. Fujita, Tetrahedron
Lett. 2017, 58, 4409.
[4] a) R. M. Moriarty, S. C. Gupta, H. Hu, D. R. Berenschot, K. B. White, J. Am.
Chem. Soc. 1981, 103, 686; b) M. Ochiai, A. Nakanishi, T. Suefuji, Org. Lett.
2000, 2, 2923; c) K. M. McQuaid, T. R. R. Pettus, Synlett 2004, 2403; d) S.
Lee, D. W. C. McMillan, Tetrahedron 2006, 62, 11413.
[5] a) Y. N. Ito, T. Katsuki, “Oxidation of the C=C bond” in Asymmetric Oxid-
ation Reactions (Ed. T. Katsuki), Oxford University Press, 2001, ch. 2.1, pp.
19–37; b) T. Katsuki, Synlett 2003, 281.
[13]
a) B. Darses, R. Rodrigues, L. Neuville, M. Mazurais, P. Dauban, Chem.
Commun. 2017, 53, 493; b) D. Hazelard, P.-A. Nocquet, P. Compain, Org.
Chem. Front. 2017, 4, 2500.
C. G. Espino, K. W. Fiori, M. Kim, J. Du Bois, J. Am. Chem. Soc. 2004, 126,
15378.
[14]
[15]
[16]
D. Clemente-Tejeda, A. Lopez-Moreno, F. A. Bernejo, Tetrahedron 2013,
69, 2977.
Though the difference in yields between the entries 12 and 13 is not
significant, the choice of PhI(OPiv)2 as the oxidant to study the scope of
the reaction was motivated by the reaction of alkene 1i with PhI(OAc)2
that leads to the expected epoxide 2i in only 40 % yield [70 % with
PhI(OPiv)2; see Table 2].
[6] For excellent overviews, see: a) M. P. Doyle, M. A. McKervey, T. Ye, Modern
Catalytic Methods for Organic Synthesis with Diazo Compounds: From
Cyclopropanes to Ylides, Wiley, New York, 1998; b) H. M. L. Davies, E. G.
Antoulinakis, Org. React. 2001, 57, 1; c) M. P. Doyle, T. Ren, K. D. Karlin,
Prog. Inorg. Chem. 2001, 49, 113; d) C. A. Merlic, A. L. Zechman, Synthesis
2003, 1137; e) H. M. L. Davies, R. E. J. Beckwith, Chem. Rev. 2003, 103,
2861; f) A. G. H. Wee, Curr. Org. Synth. 2006, 3, 499; g) H. M. L. Davies,
J. R. Manning, Nature 2008, 451, 417; h) M. P. Doyle, R. Duffy, M. Ratnikov,
L. Zhou, Chem. Rev. 2010, 110, 704; i) A. Ford, H. Miel, A. Ring, C. N.
Slattery, A. R. Maguire, M. A. McKervey, Chem. Rev. 2015, 115, 9981.
[7] S. P. Uemura, S. R. Patil, Chem. Lett. 1982, 11, 1743.
[8] a) A. J. Catino, R. E. Forslund, M. P. Doyle, J. Am. Chem. Soc. 2004, 126,
13622; b) A. J. Catino, J. M. Nichols, H. Choi, S. Gottipamula, M. P. Doyle,
Org. Lett. 2005, 7, 5167; c) E. C. McLaughlin, H. Choi, K. Wang, G. Chiou,
M. P. Doyle, J. Org. Chem. 2009, 74, 730; d) M. O. Ratnikov, M. P. Doyle,
Mendeleev Commun. 2014, 24, 187; e) J. A. S. Coelho, A. F. Trindade, R.
Wanke, B. G. M. Rocha, L. F. Veiros, P. M. P. Gois, A. J. L. Pombeiro, C. A. M.
Afonso, Eur. J. Org. Chem. 2013, 1471; f) Y. Wang, Y. Kuang, Y. Wang,
Chem. Commun. 2015, 51, 5852; g) L. Zhao, Y. Wang, Z. Ma, Y. Wang,
Inorg. Chem. 2017, 56, 8166; h) Y. Lin, L. Zhu, Y. Lan, Y. Rao, Chem. Eur. J.
2015, 21, 14937.
[17]
[18]
The reaction with a tetrasubstituted alkene only leads to the recovery
of the starting material.
An allylic alcohol such as geraniol does not afford the corresponding
epoxide under the reaction conditions. A complex mixture of products,
instead, is obtained as indicated by the 1H NMR of the crude.
In order to circumvent the lack of reactivity of α,ꢀ-unsaturated ketones,
these were converted to cyclic ketals. However, application of the reac-
tion conditions to the latter only leads to the starting ketone following
cleavage of the ketal.
It is worth mentioning that the reaction of m-CPBA with the ortho-cyano
styrene only leads to the corresponding epoxide 2s in 13 % yield. See:
“ACC inhibitors and uses thereof”, PCT/ WO 2013071169A1, May 16,
2013.
[19]
[20]
[21]
[22]
K. Miyamoto, N. Tada, M. Ochiai, J. Am. Chem. Soc. 2007, 129, 2772.
Use of other Lewis acids such as Cu(OTf)2, Pd(OAc)2, BF3·OEt2, Sc(OTf)3,
CeCl3, LiCl, or TMSOTf, in the epoxidation of 1i leads to either its decom-
position or the formation of the expected product 2i in very low yield.
For a previous Lewis acid-catalyzed olefin epoxidation with an iodine(III)
oxidant, see: Y. Yang, F. Diederich, J. S. Valentine, J. Am. Chem. Soc. 1991,
113, 7195.
The electron-withdrawing property of the ligand on the dirhodium com-
plex would allow for tuning its Lewis acidity. The latter should be Lewis
acidic enough for the activation of the hypervalent iodine reagent, how-
ever, a too strong Lewis acid is likely to increase its oxidizing character
thereby inducing the decomposition of the resulting epoxide, as demon-
strated by the study of Ochiai (see ref. 21).
[23]
[24]
[9] D. Shabashov, M. P. Doyle, Tetrahedron 2013, 69, 10009.
[10] For reviews, see a) P. Müller, Acc. Chem. Res. 2004, 37, 243; b) M. S.
Yusubov, A. Yoshimura, V. V. Zhdankin, ARKIVOC 2016, i, 342. For some
relevant examples, see: c) P. Müller, D. Fernandez, Helv. Chim. Acta 1995,
78, 947; d) R. P. Wurz, A. B. Charette, Org. Lett. 2003, 5, 2327; e) S. R.
Goudreau, D. Marcoux, A. B. Charette, D. Hughes, Org. Synth. 2010, 87,
Eur. J. Org. Chem. 0000, 0–0
6
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim